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STUDIES IN TILT-ROTOR VTOL AIRCRAFT AEROELASTICITY 

Abstract 

bY 

RAYMOND GEORGE KVATERNIK 

The r e s u l t s  of some aeroe las t ic  and dynamic s tudies  which 

complement and extend various aspects of technology applicable t o  

t i l t - r o t o r  VTOL a i r c r a f t  a re  presented. Par t icu lar  a t ten t ion  is  

given t o  proprotor/pylon whirl  i n s t a b i l i t y ,  a precession-type 

i n s t a b i l i t y  akin t o  propeller/nacelle whirl  f l u t t e r .  

flapping and pitch-change freedoms of a proprotor a re  shown t o  

lead t o  a fundamentally d i f fe ren t  s i t ua t ion  as regards t h e  manner 

i n  which the  precession-generated aerodynamic forces and moments 

act  on t h e  pylon and induce whirl f l u t t e r  r e l a t ive  t o  t h a t  of a 

propeller.  The implication of these forces and moments with regard 

t o  t h e i r  capacity fo r  ins t iga t ing  a whirl i n s t a b i l i t y  is examined, 

demonstrating, apparently f o r  the  first t i m e ,  precisely why a 

proprotor can exhibit  whirl f l u t t e r  i n  e i the r  the backward or 

forward d i rec t ions  i n  contrast  t o  a propeller which is found t o  

always whirl i n  t he  backward direct ion.  

del ineat ing the  e f f ec t  of several  system design parameters on 

proprotor/pylon s t a b i l i t y  and response are shown. Results of 

experimental s tud ies  

copter Company invest igat ions of a 0.133-scales semispan, dynamic, 

The blade 

Analytical t rend s tudies  

pr incipal ly  those of j o i n t  NASA/Bell H e l i -  
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aeroe las t ic  model i n  the  NASA-Langley t ransonic  dynamics tunnel ,  

a re  presented and compared with theo re t i ca l  results where applicable.  

Analytical  predict ions are shown t o  be i n  good agreement with t h e  

measured dynamic cha rac t e r i s t i c s .  

na tura l  mode v ibra t ion  ana lys i s  by d i r e c t  and component mode 

synthesis techniques are described and the  results of some compara- 

t i v e  ana ly t i ca l  and experimental s tud ies  shown. The concept of a 

gyroscopic f i n i t e  element t o  approximate t h e  dynamic e f f e c t s  of 

ro t a t ing  components such as propel le rs  o r  proprotors is introduced 

and both analyses fo r  na tura l  mode analysis  extended t o  include 

gyroscopic coupling e f f ec t s .  A method f o r  e f f ec t ing  a reduction 

of t he  r e su l t i ng  equations of  motion t o  a form amenable t o  eigen- 

value solut ion i n  t h e  general  case i n  which both t h e  mass and stiff- 

ness matrices are s i n g u l a r  i s  proposed. 

Computational procedures f o r  
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CHAPTER 1 

INTRODUCTION 

A wide var ie ty  of c iv i l  and mi l i ta ry  missions requiring an 

a i r c r a f t  which combines the high payload v e r t i c a l  l i f t  capabi l i ty  

of the he l icopter  with the  high-speed cruise  e f f ic iency  and range 

of a fixed-wing a i r c r a f t  have been establ ished in  recent years 

(Refs. 1-1 t o  1-5). These missions include such appl icat ions as 

passenger and u t i l i t y  in te r -c i ty  t ransport ,  center-of-city t o  

a i rpo r t  commuter service, u t i l i t y  through m e d i u m  weight tactical 

and l o g i s t i c  t ransports ,  search and rescue, and reconnaissance. 

Several composite V/STOL concepts based on t he  use of rotary-wings 

have been proposed t o  m e e t  the need f o r  an operational aircraft 

having the  desirable  hybrid charac te r i s t ics  (Refs. 1-6 t o  1-10>. 

One example of t h i s  concept is t h e  t i l t -proprotor  characterized by 

wing-tip mounted ro tors  which tilt forward 90' from t h e  v e r t i c a l  

posit ion employed fo r  he l icopter  f l i g h t  to a horizontal  posi t ion t o  

function as propel lers  fo r  high-speed airplane f l i g h t .  

The f e a s i b i l i t y  of the t i l t -propro tor  composite a i r c r a f t  con- 

cept w a s  es tabl ished i n  the mid-1950's on t h e  bas i s  of the success- 

f u l  f l i g h t  demonstration of the B e l l  XU-3 and Transcendental Model 

1-G and Model 2 convertiplanes (Figs. 1-1 t o  1-3). A summary of 

the experience per ta ining t o  these "test bed" a i r c r a f t  as w e l l  as 

1 
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subsequent re la ted  work t o  serve i n  an introductory capacity are 

des cr ib  ed below. 

The Transcendental Model l-G w a s  designed and b u i l t  as a pr i -  

vate undertaking during the period 1951-1953. Although accumulating 

a respectable amount of f l i g h t  t i m e ,  the  a i r c r a f t  w a s  used primarily 

i n  a funded study f o r  t he  Air Force of t he  mechanical i n s t a b i l i t y  

and v ibra t iona l  charac te r i s t ics  of 

during simulated conversion, t h e  ful l -scale  a i r c r a f t  being suspended 

i n  an e l a s t i c  "cradle" during these tests. 

are given i n  Ref. 1-11. An accident,  resu l t ing  from a mechanical 

malfunction, severely damaged the  a i r c r a f t  i n  1955. The Transcen- 

dental  Model 2,  b u i l t  under A i r  Force contract  i n  1956 as a 

successor t o  the Model l-G, w a s  of t h e  same bas i c  design but w a s  

s l i g h t l y  la rger  and had 50% more i n s t a l l e d  power. 

f l i g h t  w a s  demonstrated i n  the same year but  a proposed f l i g h t  

test program t o  study the s t a b i l i t y  and control  charac te r i s t ics  i n  

the hel icopter ,  conversion, and airplane modes of f l i g h t  w a s  never 

i n i t i a t e d  due t o  termination of funding. Refs. 1-12 and 1-13 

provide some general descr ipt ive information r e l a t ing  t o  both the  

Model 1-G and Model 2. 

t i l t - r o t o r  convertiplanes 

Results of t h i s  work 

Helicopter 

The B e l l  XV-3, b u i l t  under j o i n t  Army-Air Force sponsorship, 

had a considerably longer research existence. 

b u i l t  under t h i s  program. The f i r s t ,  during 1953-1955, had three- 

bladed ful ly-ar t iculated proprotors (Fig. 1-4). A blade osc i l la -  

t i o n  problem associated with t h e  a r t i cu la t ed  ro to r  w a s  i den t i f i ed  

Two XV-3s were 
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i n  f l i g h t  and w a s  the cause of an accident which badly damaged the 

a i r c r a f t  i n  1956. Some of the  ea r ly  development work re la ted  t o  

t h i s  desigri is  summarized i n  Ref. 1-14. A two-bladed semi-rigid 

proprotor design w a s  incorporated i n  the  second XV-3 and success- 

f u l l y  eliminated the blade osc i l l a t ion  problem of the o r ig ina l  

design. The second XV-3, shown i n  Fig. 1-5, w a s  the subject of 

extensive f l i g h t  and ful l -scale  wind-tunnel s tud ies  (Refs. 1-15 t o  

1-19). Early f l i g h t  experience iden t i f i ed  several def ic iencies  and 

problem areas , espec ia l ly  while operating i n  the airplane mode of 

f l i g h t  with the ro tors  f u l l y  converted forward. In  pa r t i cu la r ,  

t rans ien t  blade flapping during longi tudinal  and d i rec t iona l  man- 

euvering and l o w  levels of longi tudinal  (short  period) s t a b i l i t y  

near the dive speed w e r e  unacceptable. The low l eve ls  of short  

period s t a b i l i t y  w e r e  found t o  be  re la ted  t o  t h e  inplane forces  

generated by the proprotors as a re su l t  of blade flapping associated 

with a i r c r a f t  pi tching motions (Ref. 1-18). These were i n  a 

direct ion t o  produce negative p i t ch  damping. P r i o r  t o  fu r the r  

f l i g h t  t e s t ing ,  ful l -scale  wind-tunnel tests were conducted i n  

1962 i n  t h e  NASA Ames 40 x 80-ft tunnel  t o  inves t iga te  proposed 

solut ions t o  these deficiencies.  During these tests, a heretofore  

unknown proprotor/pylon i n s t a b i l i t y ,  similar t o  propel ler  whi r l  

f l u t t e r ,  w a s  experienced in  which the  proprotor/pylon exhibi ted a 

low frequency precessional motion i n  a d i rec t ion  opposite t o  t h e  

d i rec t ion  of ro tor  rotat ion.  Clearly,  i n  order t o  maintain t h e  

v i a b i l i t y  of t h e  t i l t -proprotor  concept it remained t o  demonstrate 

d 
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t ha t  ne i the r  the whi r l  f l u t t e r  anomaly nor the major f l i g h t  defi-  

ciencies were endemic t o  the design principle.  An ana ly t i ca l  and 

experimental research program having t h i s  object ive w a s  undertaken 

by B e l l  i n  1962. Results of t h i s  research, which defined the in- 

s t a b i l i t y  mechanism and establ ished several bas i c  design solut ions,  

were reported by H a l l  (Ref. 1-20). Edenborough (Ref. 1-21) pre- 

sented r e s u l t s  of subsequent ful l -scale  tests at  Ames i n  1966 

which ve r i f i ed  the ana ly t ica l  predict ion techniques, t he  proposed 

design solut ions,  and demonstrated s t a b i l i t y  of t he  XV-3 through 

the maximum wind tunnel speed of 195 knots. During the  f i n a l  run 

i n  t h i s  test program the a i r c r a f t  suffered severe damage as a 

r e su l t  of the abrupt l o s s  of both pylons. Post-failure examination 

revealed that  t h e  f a i l u r e  w a s  no t  r e l a t ed  t o  t h e  proprotor/pylon 

s t a b i l i t y  problem under invest igat ion but  w a s  t h e  r e s u l t  of prop- 

ro to r  

which loosened and fatigued a main supporting member i n  the l e f t  

PY 

speed operation near one-per-rev pylon whirl resonance 

In 1965 the  U. S. Army inaugurated the Composite Aircraf t  

Program which had the goal of producing a rotary-wing research 

a i r c r a f t  combining the hovering capabi l i t i es  of t h e  he l icopter  

with the  high-speed cru ise  capabi l i t i es  of a fixed-wing a i r c r a f t  

t o  be used i n  evaluating i ts  operational po ten t i a l  f o r  fu ture  

Army missions. B e l l  Helicopter Company, with a t i l t -proprotor  

design proposal, w a s  awarded one of two exploratory def in i t ion  

contracts i n  1967. The B e l l  Model 266 (Fig. 1-6) was  the  design 
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resu l t ing  from t h e i r  work which is documented i n  Ref. 1-22. The 

research a i r c r a f t  program which w a s  t o  have been i n i t i a t e d  subse- 

quent t o  the  exploratory def in i t ion  phase was never begun, however, 

primarily due t o  lack of funding. 

Concurrent with the  developments described above various VTOL 

concepts based on the use of propel le rs  having hinged blades were 

proposed as research vehicles ,  several reaching f l i g h t  test s t a tus .  

These included the Grumman proposal i n  the Tri-Service VTOL trans- 

port  competition, t he  Vertol  VZ-2 b u i l t  f o r  the Army, and t h e  Kaman 

K-16 amphibian b u i l t  fo r  the Navy. A vigorous invest igat ion of 

t he  whi r l  f l u t t e r  phenomenon pecul iar  t o  conventional propel lers  

had been i n i t i a t e d  i n  1960 as a r e s u l t  of t h e  lo s s  of two Lockheed 

Electra a i r c r a f t  i n  f a t a l  accidents. The l ikelihood tha t  hinged 

blades could adversely a f f e c t  t h e  whi r l  f l u t t e r  behavior of a 

propel ler  undoubtedly contributed considerable impetus t o  examine 

the whir l  f l u t t e r  charac te r i s t ics  of these unconventional propellers.  

Work re la ted  t o  these e f f o r t s  may b e  found i n  Refs. 1-23 t o  1-28. 

The foregoing generally cons t i tu tes  an overview of proprotor 

and proprotor-related experience through the year 1967. The 

work presented herein is a comprehensive account of t h e  pr inc ipa l  

achievements of  ai^ ae roe la s t i c  proprotor research program i n i t i a t e d  

in  1968. Motivating fac tors  leading t o  the work, scope and 

nature  of the invest igat ion,  and considerations guiding t h e  analy- 

t i ca l  development are outlined below. 
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A 0.133-scale semi-span dynamic and aeroe las t ic  model of the  

Bell  Model 266 t i l t -proprotor  b u i l t  by Bel l  i n  support of t h e i r  

work pertaining t o  the Composite Aircraf t  Program w a s  given t o  

NASA Langley by the Army. 

continued interest of both government and industry i n  the proprotor 

composite V/STOL concept suggested the usefulness of continuing 

the  experimental research i n i t i a t e d  by B e l l  with t h i s  model during 

the Composite Aircraf t  Program and developing supporting analyses. 

The usefulness of a "fresh" approach w a s  a l so  suggested by the f ac t  

tha t  the work reported i n  the  l i t e r a t u r e  has generally been of a 

fragmentary nature,  each being directed t o  d i f f e ren t  aspects of 

t i l t - r o t o r  aeroe las t ic i ty ,  and sparse i n  cor re la t ions  of theory 

with experiment. It w a s  therefore  judged t h a t  a somewhat broader 

but unified treatment emphasizing detai led ana ly t ica l  developments, 

t rend s tudies ,  and correlat ions with experimental r e s u l t s  would 

provide a useful  contribution t o  exis t ing knowledge. 

The ava i l ab i l i t y  of t h i s  model and the  

The wide var ie ty  of technical  considerations confronting the 

aeroelast ic ian and s t ruc tu ra l  dynamicist i n  t he  design of a prop- 

ro tor  V/STOL a i r c r a f t  are brought i n t o  perspective i n  Fig. 1-7, 

which enumerates several  design problems associated w i t h  each 

regime of f l i g h t  i n  which vehicles of t h i s  type operate. 

important areas of research present themselves. I n  the i n t e r e s t  

of expediency, t h e  scope of the  invest igat ion t o  be undertaken 

had t o  be l imi ted  i n  some sense. 

and B e l l  s tudies  conducted during the  Composite Aircraf t  Program 

Many 

Because both the  XV-3 experience 

d 



7 

i den t i f i ed  cer ta in  high-risk areas associated with proprotor V/STOLs 

operating i n  the  airplane f l i g h t  mode , spec i f i ca l ly  proprotor/pylon 

s t a b i l i t y  (whirl  f l u t t e r )  , blade flapping, and shor t  period s t a b i l i t y ,  

and because operations i n  t h i s  mode generally d i c t a t e  the  major 

vehicle design requirements, it w a s  judged t h a t  s tud ies  per ta ining 

to  these high-risk areas and r e l a t ed  aspects would cons t i tu te  

both a prudent and contributary research e f f o r t .  The spec i f i c  areas 

t o  be t r ea t ed  herein,  e i t h e r  e x p l i c i t l y  o r  impl ic i t ly ,  are indicated 

i n  Fig. 1-7 by a check mark. 

In  t h e  ear ly  stages of planning the l i n e s  along which the  

ana ly t i ca l  development would proceed i t  was  recognized tha t  a 

mathematical formulation, ab i n i t i o ,  fo r  the f l u t t e r  analysis  of a 

comp l e  te prop rot o r  V/ STOL a i r c r a f t  rep resented a f o nnidab l e  task. 

Prudence and mathematical t r a c t a b i l i t y  suggested a sequent ia l  

ana ly t i ca l  development , approaching the  complete problem i n  a 

coordinated manner. It w a s  a l so  reasoned t h a t ,  from a research 

point of view, a more meaningful contribution could be made by 

emphasizing theo re t i ca l  methods which provide a preliminary design 

analysis  capabi l i ty ,  as contrasted t o  the  generally complex 

analyses employed i n  es tab l i sh ing  a f i n a l  design. 

considerations i t  was  decided t o  have recourse t o  the generally 

accepted engineering p rac t i ce  of analyzing se lec ted  components of 

the a i r c r a f t  as a prelude t o  a t tacking the complete a i r c r a f t .  

Methodologies developed during these intermediate s tages  of analy- 

sis would then provide a r a t iona l  mathematical b a s i s  from which 

Based on these 
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t o  synthesize a s t a b i l i t y  analysis  of the  complete a i r c r a f t .  

Since preliminary design analyses generally en ta i l  broad 

parametric s tud ies  during which control l ing parameters must be 

quickly i so la ted ,  a l i nea r  analysis  is s t rongly recommended. 

Fortunately, s t a b i l i t y  considerations associated with proprotor 

operation i n  the  airplane mode of f l i g h t  admit of a l i n e a r  formu- 

la t ion ,  i n  pa r t i cu la r  a l i n e a r  eigenvalue formulation. This 

for tu i tous  circumstance arises from t h e  f a c t  tha t  t he  proprotor 

shaf t  is  nominally aligned with the  airstream and perturbations 

from t h i s  posi t ion contribute f i r s t  order s m a l l  quant i t ies  t o  the  

proprotor aerodynamic loading, as contrasted t o  operations i n  the 

he l icopter  o r  conversion modes where f i n i t e  angles of t h e  sha f t  

r e l a t ive  t o  the airstream lead t o  time-dependent coef f ic ien ts  in 

the equations of motion. Also, s ince  the proprotor does not 

operate i n  i ts  own wake when i n  the airplane mode, the  problem is 

not  one of forced response, as would be  the  case when operating as 

a he l icopter  . 
With a view toward developing the ingredients  needed fo r  the  

sequent ia l  ana ly t i ca l  approach outlined above, t he  theo re t i ca l  

considerations i n  t h i s  d i s se r t a t ion  are directed toward providing 

the  analysis capabi l i ty  and associated computer programs r e l a t ed  

t o  two aspects of the ove ra l l  problem. 

of an idea l ized  proprotor/pylon system supported on cons t ra in ts  

simulating the  force-def l ec t ion  characteristics of the loca l  wing 

attachment point. Attention t o  t h i s  aspect is  perhaps obvious i n  

F i r s t ,  the f l u t t e r  analysis  
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view of t h e  f a c t  tha t  t h e  model employed i n  the  experimental inves- 

t i g a t i o n  w a s  a semi-span model and t h e  f a c t  t h a t  proprotor V/STOL 

f l u t t e r  t e s t s  employing semi-span models generally precede f l u t t e r  

t e s t s  of complete models. However, t h i s  approach a l so  follows the 

customary engineering prac t ice  of performing preliminary f l u t t e r  

analyses f o r  conventional propeller-driven a i r c r a f t  by assuming the 

propel ler /nacel le  system t o  be f l ex ib ly  mounted t o  a r i g i d  wing. 

The next l og ica l  s t ep  i n  t h i s  sequence would normally be a f l u t t e r  

analysis  of the  wing assuming the  propPotor/pylon system t o  be 

r ig id ly  attached t o  the  wing. 

schemes are generally avai lable  and can be adapted t o  t h i s  phase 

of t he  ove ra l l  analysis  procedure i f  t he  s t r u c t u r a l  or modal 

information required by these various methods a r e  avai lable .  

observation, the  recognized need f o r  modal information i n  related 

d isc ip l ines  such as dynamic response analyses, and the  design re- 

quirement of keeping airframe natura3 frequencies c l e a r  of 

resonances w i t h  harmonics of the proprotor speed, suggested t h a t  

the second directed e f f o r t  concern i tself  with developing computa- 

t i o n a l  procedures f o r  t h e  na tura l  mode v ibra t ion  analysis  of 

airframe s t ruc tures  

Subsonic wing f l u t t e r  analysis 

This 

In  accordance w i t h  t he  ana ly t i ca l  philosophy adopted herein 

a t t en t ion  is directed t o  two methodologies f o r  na tura l  mode 

vibra t ion  analysis .  

on solving the matrix eigenvalue problem re su l t i ng  from a f i n i t e  

element representat ion of the complete s t ruc tu re  as an en t i t y .  

The f i r s t  cons is t s  of a d i r e c t  approach based 
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This approach w a s  suggested by the need f o r  a straightforward 

vibration analysis scheme t o  provide the system modal information 

required fo r  wing f l u t t e r  and dynamic responee antilyses based on 

a normal mode method. For la rge ,  complex structural. systems t h e  

determination of the  natural  modes by a d i r ec t  method of ten leads t o  

a problem s i ze  which exceeds the  storage capacity of available 

computers. 

analysis i n  such circumstances is t h a t  of component mode synthesis,  

This method i s  based on the  concept of synthesizing the vibrat ion 

modes of the  complete s t ruc ture  from mdes of conveniently defined 

subsystems, o r  components, i n t o  which the  s t ruc ture  has been 

divided. The expedient of reducing the  system degrees of  freedom, 

and hence the  s i z e  of the eigenvalue problem, i s  introduced by 

p a r t i a l  modal synthesis wherein only a r e l a t ive ly  few of the  modes 

from each component a re  chosen a8 degrees of freedom and employed 

i n  the synthesizing procedure. I n  recognition of the f ac t  tha t  

la rge  ro ta t ing  components (such as proprotors o r  propel lers)  may 

alter the  vibratory charac te r i s t ics  of an airframe re l a t ive  t o  

the case i n  which the  spin is  zero, a t ten t ion  i s  a lso  directed t o  

extending both analyses fo r  natural  mde vibrat ion analysis t o  

include the e f f ec t s  of gyroscopic coupling forces.  

An a l te rna t ive  approach t o  natural  mode vibrat ion 

"he analyses f o r  natural  mode vibrat ion antilysis by d i r ec t  and 

component mode synthesis techniques developed i n  th i s  diissertation 

are, i n  pr inciple ,  applicable t o  a s t ruc tu ra l  idea l iza t ion  based 

on any type of f i n i t e  element (segments of beams, p la tes ,  shells, 
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e t c .  1. 

however, limited t o  s t ruc tures  which admit of a "stick" model 

representation i n  which the  s t ruc ture  i s  taken t o  be composed of 

an assemblage of beams, springs , and r i g i d  bodies. 

s t ruc tures  of p rac t i ca l  i n t e re s t  can be represented i n  t h i s  manner 

for  dynamic analyses, par t icu lar ly  i n  the preliminary stages of 

design, the computer programs const i tute  more than an academic 

exercise and have a r e l a t ive ly  wide range of engineering 

appl icabi l i ty .  

The computer programs based on these analys&s* are, 

Since many 

The subject matter has been arranged with a v iew toward 

achieving a pedagogical presentation. 

rotor  V/STOL concept as embodied i n  the  t i l t -propro tor  - and i t s  

var iant  the  t i l t - f o l d  proprotor - and a discussion of t he  

mechanism of proprotor/pylon i n s t a b i l i t y ,  par t icu lar ly  as it re- 

lates t o  "classical ' '  propel ler  whirl  f l u t t e r  , are presented i n  

Chapter 2. Other s a l i en t  dynamic features  indigenous t o  proprotor- 

type a i r c r a f t  are reviewed both f o r  completeness and as an aid t o  

understanding subsequent discussions. A comprehensive ana ly t ica l  

development for t he  f l u t t e r  analysis of a mathematical model of an 

ideal ized proprotor/pylon system supported on l o c a l  wing constraints  

i s  given i n  Chapter 3. These equations a l so  provide the bas i s  f o r  

formulating the equations f o r  calculat ing the  proproCor-generated 

osc i l l a to ry  force and moment derivatives and the  osc i l l a to ry  blade 

A retrospective of the prop- 

* Only the  case of zero gyroscopic coupling has been programmed. 

1 
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flapping derivatives.  

Appendices. 

Chapter 4 i s  devoted t o  r e l a t ive ly  extensive ana ly t ica l  t rend  

studies t o  del ineate  the  effects of various design parameters on 

proprotor/pylon s t a b i l i t y ,  blade flapping response, and proprotor- 

generated forces and moments. Chapter 5 is primarily concerned 

w i t h  val idat ion of the  developed proprotor analyses by demonstrating 

correlat ion w i t h  experimental r e su l t s ,  pr incipal ly  those from j o in t  

MASA/Bell s tudies  of t h e  Model 266 i n  the  Langley transonic dynamics 

tunnel. The ana ly t ica l  bases fo r  the  natural  mode vibrat ion 

analysis of complex s t ruc tu ra l  systems by d i r ec t  and component 

mode synthesis techniques are outlined i n  Chapter 6. 

i l l u s t r a t i v e  example of the free-free Vibration analysis of t he  

Model 266 by the  d i r ec t  method as w e l l  as t he  r e su l t s  of  the 

application of the  modal synthesis scheme t o  two simple s t ruc tu ra l  

systems are  given i n  the Appendices. 

the  concept of a gyroscopic f i n i t e  element. 

a r t i f i c e ,  both analyses f o r  determining natural  modes and fre- 

quencies of vibrat ion are extended t o  include the  case of a 

gyroscopically coupled e l a s t i c  system. 

The details, hqwever, are relegated t o  the 

Using the design configuration of  the B e l l  Model 266, 

A detai led 

Chapter 6 also introduce6 

By means of t h i s  

The r e su l t s  reported herein are primarily aimed a t  advancing 

the technology applicable t o  proprotor V/STOL a i r c r a f t .  Selected 

ana ly t ica l  and experimental s tudies  and related topic  discussions 

are presented t o  highlight concepts, ana ly t ica l  developments, and 

present a composite view of various aeroelast ic  and dynamic aspects 

peculiar t o  proprotor vehicles. The work herein generally extends 
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and complements selected a n d y t i c a l  and experimental work i n  the 

l i t e r a t u r e  and presents aspects and methods not presently i n  the  

l i t e r a t u r e .  

A l i s t i n g  of all computer programs developed i n  conjunction 

w i t h  the analyses herein is  included i n  the  Appendix. 
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Figure 1-2.- B e l l  XV-3 t i l t - r o t o r  convertiplane i n  hover and low-speed 
f l i g h t  ( 195 5) . 
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CHAPTER 2 

A RETROSPECTIVE OH PROPELLER ANI) PROPROTOR WHIRL FLUTTER 

Introduction 

Continuing i n  the  introductory s p i r i t  of Chapter 1, t h e  pre- 

sent chapter,  after b r i e f l y  reviewing some of the conceptual 

aspects of proprotor V/STOL a i r c r a f t  design, reexamines several  

s a l i e n t  features of propeller-and proprotor-related dynamics w i t h  a 

view toward providing insight  i n t o  t h e  mechanism of w h i r l  f l u t t e r  

fo r  both propel lers  and proprotors through r e l a t i v e l y  simple physi- 

ca l  considerations.  The fundamental difference i n  the  manner i n  

which precession-generated aerodynamic forces  ac t  on the  pylon and 

induce whir l  f l u t t e r  is delinehbed. The source of t h i s  difference 

i s  described, providing a bagis for showing why a proprotor can 

exhibi t  whirl f l u t t e r  i n  e i t h e r  t he  backward or forward d i rec t ions  

while a propel ler  whirls only i n  the backward d i rec t ion .  

The Proprotor V/STOL Aircraf t  Concept 

"he low-disc-loading hel icopter  has established itself as the 

most e f f i c i e n t  vehicle having a v e r t i c a l  l i f t  and hovering 

capabi l i ty .  

blade Mach number and r e t r ea t ing  blade stall on high-speed heli-  

The aerodynamic l imi ta t ions  imposed by advancing 

copter performance are well-known.* Increasing demands on 

*See, f o r  example, "Ektending Helicopter Speed Performance", by R.M. 
Carlson, R. E, Donham, R. A. Blay, and D. W. H. Godfrey, Lockheed 
Horizons, July 1967. 
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extending the forward speed capabi l i ty  of the  hel icopter  have l ed  

to  so-called compound hel icopters  which p a r t i a l l y  unload the ro tor  

i n  forward f l i g h t  through t h e  use of small wings and employment of 

an auxi l iary propulsion system t o  provide forward th rus t ,  thereby 

delaying the aerodynamic l imitat ions.  However, a t  speeds approach- 

ing about 300 knots the  compressibility drag rise on the  advancing 

blades becomes excessive even on a compound configuration. 

Continued extension of rotary-winged vehicle  speed performance 

dependson a l t e r ing  the  conventional edgewise-flying ro to r  orienta- 

t i on  in  a manner which circumvents t h e  aerodynamic l imi ta t ions  a t  

high forward speeds. 

a i r c r a f t  which, a f t e r  take-off using t h e  ro to r  system i n  the  

manner of a conventional hel icopter ,  convert the ro tor  function 

i n t o  a fixed-wing configuration. Conceptually, there are several  

means avai lable  fo r  accomplishing t h i s  metamorphosis, allowing 

e f f i c i e n t  airplane-type c ru ise  speeds with no s a c r i f i c e  of v e r t i c a l  

l i f t  capabili ty.  

2-1 and 2-2. 

be discussed here. 

(a) The Tilt-Rotor 

This trend has led to  composite o r  convertible 

Several such techniques are discussed i n  Refs. 

Two par t i cu la r  concepts t h a t  employ proprotors w i l l  

One concept which o f fe r s  an e f f i c i e n t  c ru ise  speed 

po ten t i a l  i n  t h e  300-350 knot range and is current ly  the subject 

of ac t ive  design s tudies  is  the  t i l t - ro to r .  After l i f t - o f f  as a 

hel icopter ,  t r ans i t i on  from hel icopter  t o  fixed-wing f l i g h t  is  

made by gradually s h i f t i n g  l i f t  from rotors,  mounted on wing t ip -  

mounted pylons t o  wings as t h e  pylons convert from the  vertical o r  
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zero degree conversion angle t o  the horizontal  o r  90° conversion 

angle. 

(hence the acronym proprotor) and the  weight of the a i r c r a f t  is 

completely supported by conventional high aspect r a t i o  wings. 

typ ica l  conversion "corridor" is qui te  broad, thereby eliminating 

the need f o r  precisely scheduled conversion with power o r  airspeed. 

A typ ica l  conversion would be made i n  the 120-150 knot speed 

range, the minimum airspeed f o r  conversion being d ic ta ted  by wing 

s ta l l .  

When f u l l y  converted the  ro to r s  act as t r ac t ive  propel lers  

The 

The hel icopter  mode of f l i g h t  is generally taken t o  be tha t  

fo r  pylon conversion angles less than 15' and the conversion mode 

f o r  pylon angles between 1 5 O  and 90'. When f u l l y  converted ( g o o )  

t he  mode has been variously designated as the airplane,  high-speed, 

or  proprotor mode. STOL-type operational capabi l i ty  (under overload 

gross weight conditions) is made possible by converting the pylons 

up t o  30' fo r  ro l l i ng  takeoffs and landings. 

shaf t  joining the two ro tors  provides f o r  synchronization of rotor  

speeds and insures tha t  i n  t h e  event of an engine f a i l u r e  e i t h e r  

engine may dr ive  both rotors.  

from any f l i g h t  mode i n  the event of t o t a l  power fa i lure .  This 

feature  was demonstrated by power-off reconversions of the B e l l  

XV-3 convertiplane during its f l i g h t  evaluation. 

An interconnecting 

Autorotational landings may be made 

Specific considerations r e l a t ing  to  these and other  aspects 

of the  t i l t - r o t o r  a i r c r a f t  concept may be found i n  Refs .  2-3 to  

2-6. Figs. 2-1 t o  2-6 i l l u s t r a t e  artists' concepts of several  



t i l t - r o t o r  designs depicted i n  various c ivi l  and mil i ta ry  roles.  

Fig.  2-7 is a composite photograph of a l/5-scale model of the 

B e l l  Model 300 t i l t - r o  tor .  

(b) The Folding Tilt-Rotor 

Decreasing propulsive eff ic iency with increasing air- 

speed, resu l t ing  from proprotor drag i n  the  high speed mode, 

generally limits the maximurn c ru ise  speed of t he  t i l t - r o t o r  to  

about 350 knots. 

t i l t - r o t o r  configuration i n t o  the  high subsonic/transonic Mach 

number regime is through the expedient of stopping and folding 

the  blades. 

been termed the folding proprotor. 

stopping, folding, and stowing sequence subsequent t o  the pylon 

conversion process. After conversion t o  the  airplane mode of f l i g h t  

and the attainment of a speed which allows a smooth t ransfer  of 

forward th rus t  the  proprotor t h rus t  is  gradually reduced while j e t  

thrus t  from auxi l iary turbofan engines or  compound engines is 

gradually increased t o  approximate the decrease i n  proprotor 

thrust .  This progressively unloads the proprotors u n t i l  they are 

i n  a zero shaf t  torque ( tha t  is, windmilling) condition. The 

proprotors can then be decoupled from the dr ive t r a i n ,  aerodynami- 

ca l ly  feathered t o  a stop, positioned, folded back along the wing 

t i p  pylons, and locked. With t h e  blades folded, proprotor drag 

is s igni f icant ly  reduced and the a i r c r a f t  can accelerate t o  a 

cru ise  speed l imited only by the  in s t a l l ed  thrus t  of t he  jet  engines. 

An approach f o r  extending the  speed range of the 

This var ian t  of t he  t i l t - r o t o r  a i r c r a f t  concept has 

Such vehicles add a proprotor 
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For landing i n  the hel icopter  mode the  procedure is reversed. I n  

the folded configuration the  aircraft could land as a conventional 

f ixed-wing a i r c r a f t  . 
The in te res ted  reader may f ind  a broad spectrum of considera- 

t i ons  applicable t o  various design aspects of t h i s  type 

Refs. 2-4 t o  2-10. A r t i s t s '  concepts of several folding proprotor 

designs are i l l u s t r a t e d  i n  Figs. 2-8 t o  2-11. 

vehicle  i n  

Some Design Problems Associated with Proprotor Aircraf t  

As pointed out i n  Chapter 1, t h e  f e a s i b i l i t y  of t he  t i l t - r o t o r  

V/STOL a i r c r a f t  concept w a s  demonstrated by the  B e l l  XV-3 and 

Transcendental convertiplanes. However, several f l i g h t  deficien- 

c i e s  were pointed out during f l i g h t  evaluation of the XV-3, 

par t i cu la r ly  during operation i n  the  airplane mode. These included 

longi tudinal  (short  period) and la te ra l -d i rec t iona l  (Dutch r o l l )  

s t a b i l i t y  and flapping during maneuvers. 

The proprotor-generated aerodynamic forces and moments 

a f fec t ing  a i r c r a f t  rigid-body s t a b i l i t y  while operating i n  the  

high-speed cru ise  mode with t h e  pylons f u l l y  converted are brought 

i n to  perspective i n  Fig. 2-12. The aerodynamic forces and moments 

associated with l o w  frequency p i tch ,  yaw, and r o l l  o sc i l l a t ions  

about t he  a i r c r a f t  center  of gravi ty  (such as might be induced by 

a disturbance) are indicated. Since t h e  proprotors are located 

ahead of the  center of gravity i n  the  proprotor mode Fig. 2-12 

c lear ly  ind ica tes  t ha t  these forces and moments w i l l  s trongly 

influence all aspects of longi tudinal  and la te ra l -d i rec t iona l  

st a b i l i t y  . 
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The shear forces H and Y w i l l  be shown t o  be the  r e su l t  of 

proprotor flapping required t o  induce the  aerodynamic moments 

necessary t o  precess the proprotor i n  response t o  a i r c r a f t  p i t ch  

and yaw motions. Proprotor flapping is a lso  an important design 

consideration because t h e  flapping na tura l  frequency i n  the non- 

ro t a t ing  system is  close t o  the  a i r c r a f t  rigid-body frequencies 

and hence can couple with them. 

These same shear forces can, qui te  independently of any r igid-  

body motions, des tab i l ize  the  proprotor/pylon/wing system 

aeroelast ical ly .  This was dramatized during ful l -scale  tests of 

the XV-3 i n  the Ames 40 x 80 f twind-tunnel  i n  1962 when a l i m i t  

cycle whirl  i n s t a b i l i t y  was encountered. This i n s t a b i l i t y  por- 

tended a more complex var ie tyof  whirl  f l u t t e r  and elevated proprotor/ 

pylon s t a b i l i t y  analyses t o  a place of prime importance i n  the  

design process of t i l t - r o t o r  aircraft. 

of t he  proprotor, several  types of i n s t a b i l i t y  associated with the 

proprotor/pylon/wing system can be experienced , these being 

characterized by frequency, d i rec t ion  of pylon whirl ,  and the  amount 

of flapping i n  space. 

come unstable ( the XV-3 i n s t a b i l i t y  w a s  a flapping mode i n s t a b i l i t y ) .  

Because of these added complexities a proprotor w i l l  not respond 

i n  the  same rigid-body manner as a propel ler .  Hence, addi t ional  

ingredients need be considered i n  assessing system s t a b i l i t y .  

Becawemf the  flapping freedom 

e 

In  par t icu lar ,  t he  flapping modes can be- 

The folding proprotor operates i n  the  hel icopter ,  conversion, 

and proprotor modes as does a t i l t - r o t o r  and thus has similar 

. 
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dynamic problems. However, as t h e  maximum speed i n  t h e  proprotor 

mode is about 250 knots f o r  the folding proprotor t he  design 

requirements are d ic ta ted  by considerations o ther  than rigid-body 

and proprotor/pylon s t a b i l i t y  i n  t h e  proprotor mode. 

s idera t ions  are primarily those of s t a b i l i t  

the  stopping and folding sequence of t rans i t ion .  

t he  requirements imposed by the  var ia t ion  of t he  aerodynamic 

forces  and moments shown i n  F i  . 2-12 as t h e  ro tor  ro ta t iona l  speed 

is decreased t o  zero pose several in t e re s t ing  design problems. 

These include such i t e m s  as t h e  decrease i n  s ta t ic  margin as the  

proprotors are stopped, a i r c r a f t  t r i m  changes, and proprotor r igid-  

body flapping behavior as rpm is  decreased t o  zero. 

o ther  dynamic considerations which must be addressed with regard 

t o  the  t o t a l  design of a folding proprotor a i r c r a f t  are discussed 

i n  depth i n  Refs. 2-4 t o  2-10. 

These con- 

and control  during 

In  pa r t i cu la r ,  

These and 

Because of the cen t r a l  r o l e  played by t h e  proprotor-generated 

aerodynamic forces  and moments i n  a i r c r a f t  rigid-body s t a b i l i t y  

and proprotor/pylon/wing aeroe las t ic  s t a b i l i t y  (whirl f l u t t e r )  

the or ig in  of these forces  w i l l  be reviewed. 

a review of t h e  mechanism of propeller-nacelle whir l  f l u t t e r  w i l l  

be presented f i r s t .  

examine similarities and d i s s i m i l a r i t i e s  as regards t h e  whir l  

f l u t t e r  mechanism of propel lers  and proprotors. 

For completeness, 

This w i l l  also provide the opportunity to  



A Review of Several Aspects of Propeller/Nacelle Whirl F lu t t e r  

A pa r t i cu la r  manifestation of t h e  f l u t t e r  phenomenon known 

as propel ler  whir l  f l u t t e r  came i n t o  prominence i n  1960 as a 

r e su l t  of t h e  l o s s  of two Lockheed Electra aircraft in fa tal  

accidents. This i n s t a b i l i t y ,  which can occur on f l ex ib ly  mounted 

propel ler /nacel le  i n s t a l l a t ions ,  involves a self-sustained o r  

divergent whirling precessional motion of the  propel ler  hub about 

i t s  undeflected posit ion.  The poss ib i l i t y  t h a t  such an i n s t a b i l i t y  

could occur i n  a f lex ib ly  mounted propel ler /nacel le  combination 

was c i t ed  i n  a paper by Taylor and Browne as ea r ly  as 1938 (Ref. 

2-11). However, t h e  la rge  margins of s a fe ty  prevalent at tha t  

t i m e  on ex i s t ing  configurations precluded anything more than an 

academic i n t e r e s t  i n  t h i s  phenomenon.* 

tests conducted by NASA at i t s  Langley Research Center f a c i l i t y  

Extensive wind-tunnel 

(Ref. 2-14) ve r i f i ed  the  poss ib i l i t y  of whirl  f l u t t e r  i n  Electra 

a i r c r a f t  i f  the engine support s t i I f n e s s  was su f f i c i en t ly  reduced. 

Whether o r  not  the  support s t i f f n e s s  was  i n  f a c t  so reduced i n  the  

s a i d  a i r c r a f t  has never been conclusively established. Various 

ana ly t i ca l  and experimental s tud ies  were subsequently undertaken t o  

iden t i fy  and study t h e  basic  governing parameters important i n  

propel ler  whir l  f l u t t e r .  

may be found i n  Refs. 2-15 t o  2-20. 

The r e s u l t s  of several of these s tud ies  

*In pa r t i cu la r ,  t h i s  academic i n t e r e s t  w a s  exemplified by R. H. 
Scanlan and h i s  group at Rensselaer Polytechnic I n s t i t u t e .  
Refs. 2-12 and 2-13 are some r e s u l t s  of t h e i r  work. 
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The distinguishing fea ture  of t he  Electra a i r c r a f t  were the i r  

engines, which were of the  turboprop type. 

pis ton engines i n  t h a t  t he  propel ler  w a s  connected t o  the engine 

through a remote dr ive  arrangement ra ther  than d i r ec t ly  attached 

t o  the engine. This created a s t r u c t u r a l  configuration i n  which 

propeller-generated aerodynamic and gyroscopic forces assumed 

the dominant r o l e  i n  es tabl ishing the  dynamic behavior of t he  

coupled propeller/nacelle/wing system. 

of turboprop in s t a l l a t ions ,  and the  trend t o  s o f t e r  engine mounts, 

long overhung nacel les ,  and "unorthodox" methods f o r  the  placement 

of propeller/nacelle systems i n  some V/STOL a i r c r a f t  ra ised propell- 

er whir l  s t a b i l i t y  analyses t o  a posi t ion of importance i n  t h e  

design process f o r  propel ler  driven a i r c r a f t .  This importance i s  

ref lected i n  amendments t o  the U. S. Civil Air Regulations (Ref. 

2-21) which require tha t  freedom from whirl  f l u t t e r  be demon- 

s t r a t ed  under f a i l u r e  of any s ingle  element i n  the  mount system. 

They d i f fe red  from 

The dynamic implications 

Because of the cen t r a l  ro l e  played by propeller-generated 

aerodynamic and gyroscopic forces i n  the  dynamic behvaior of a 

propeller/nacelle/wing system, i n  pa r t i cu la r  whirl  f l u t t e r ,  they 

w i l l  be discussed i n  somewhat more d e t a i l  below. 

simple physical considerations assuming quasi-steady aerodynamics 

and small angle-of-attack changes can apt ly  portray the features  

of i n t e r e s t ,  the  discussion w i l l  be qua l i t a t ive  i n  nature and 

proceed along the  l i n e s  of Ref. 2-22, which is an excel lent  non- 

mathematical account of propel ler  whirl  f l u t t e r .  

Since r e l a t ive ly  
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(a) Role of Aerodynamic Forces 

Perturbed motions of 

i n  the F lu t te r  Mechanism 

a p rope l l e rhace l l e  combination in 

pitch o r  yaw while i n  forward f l i g h t  disrupt  the axial-flow 

synrmetry over t he  propeller disc. This aerodynamic asymmetry 

induces cycl ic  angle-of-attack changes, and hence cycl ic  l i f t  

force changes, an blade elements of the propeller, 

rise t o  resul tant  aerodynamic forces and nroments which, even i n  the 

absence of gyroscopic coupling forces,  can couple the pi tch and 

yaw degrees of freedom of the  propeller to  form a whirl mode. 

established small vibration theory it is known tha t  i n  harmonic 

motion (such as occurs a t  the  c r i t i ca l  f l u t t e r  speed) the phase 

s h i f t  between force and displacement i s  d i rec t ly  associated with 

any exchange of energy between a system and the forces acting on 

it. 

phase with each other are known t o  be associated with no net 

energy input i n  any complete cycle of osci l la t ion.  Inertial and 

elastic forces f a l l  i n  t h i s  category. However, the perturbation 

aerodynamic forces and moments generally have phase angles of 90' 

re la t ive  t o  the  nacelle motions and hence provide a mechanism fo r  

a ne t  energy input t o  the  system. The origin of these forces and 

moments can be demonstrated by simple considerations based on 

blade element theory. Under quasi-steady conditions the pitching 

and yawing motions that  const i tute  a whirl  motion induce flows at  

the propeller d i sc  which arise from pi tch and yaw angles and from 

pitching and yawing angular velocit ies.  Propeller blade elements 

These give 

From 

Forces and displacements which are inphase o r  180' out-of- 

d 
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experience an increase or  decrease i n  t h e i r  angle of a t tack  depend- 

ing on whether these induced flows add t o  o r  subtract  from the  un- 

perturbed inflow and ro t a t iona l  velocity. 

Results of considerations of t h i s  type are given in  Figs. 

2-13 t o  2-15. Thrust and drag have been neglected. Consider 

motion i n  the p i t ch  plane only. 

p i t ch  rate arise. 

angle relative t o  the free-stream di rec t ion  as shown i n  Fig. 

2-13a the forward f l i g h t  veloci ty  V has a cross-flow component 

Va 

azimuthal changes i n  blade element inflow angle, and hence angle 

of a t tack,  are established as outlined i n  Ref. 2-22, the  cross-flow 

component is seen t o  increase the  angle of a t tack  and hence l i f t  

of blade elements on t h e  downgoing s ide  of t h e  propeller d i sc  

while decreasing the angle of a t tack,  and hence l i f t ,  of blade 

elements on the  upgoing side. 

the  angle of a t tack  of a l l  blade elements varying harmonically 

around the  azimuth. The d i rec t ions  of these perturbation l i f t  

changes are indicated i n  Fig. 2-13a f o r  elements7in l a t e r a l l y  

disposed blades where the absolute magnitude of t he  l i f t  changes 

is a maximum. Resolving these perturbation l i f t  forces i n t o  com- 

ponents p a r a l l e l  and normal t o  the  propel ler  plane the integrated 

e f f e c t s  over one complete cycle of propel ler  ro ta t ion  produce the  

resu l tan t  force and moment shown i n  Fig. 2-14a. 

has an upward p i tch  rate about a pivot a f t  of the  propel ler  plane 

the  axial aerodynamic symmetry is modified by two types of 

Forces due t o  both p i tch  angle and 

When the  propel ler  s h a f t  is inclined at an 

a 

directed upward i n  the plane of t he  propel ler  disc. I f  

This appears as an unsteady motion, 

When the  propeller 
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perturbation flows, a cross-flow veloci ty  h& downward i n  the 

propeller plane and an inflow d is t r ibu t ion  r& normal t o  the 

propel ler  plane. These are i l l u s t r a t e d  i n  Fig. 2-13b. Since the  

cross-flow is i n  a d i rec t ion  opposite t o  tha t  due t o  p i t ch  angle 

the l i f t  changes are in  the  d i rec t ions  indicated i n  Fig. 2-13b. 

The inflow r h  increases t h e  angle of a t tack  and hence l i f t  on 

the upper half  of the propel ler  d i sc  and decreases the angle of 

a t tack  and hence l i f t  on the  lower ha l f ,  the maximum l i f t  changes 

occurring on elements of t h e  ve r t i ca l ly  oriented blades as 

indicated. The integrated e f f e c t s  produce the  resu l tan t  forces 

and moments shown i n  Fig. 2-14b. I f  similar considerations of 

azimuthal changes i n  blade element angle of a t tack  are carr ied 

out f o r  motion i n  the yaw di rec t ion  one can es t ab l i sh  t h e  exis- 

tence of t he  s ta t ic  and dynamic forces and moments summarized i n  

Fig. 2-15. In  Figs. 2-13 t o  2-15, t he  pa r t i cu la r  perturbation 

veloci ty  component giving rise t o  a force o r  mment is indicated 

i n  paren theses. 

The s ta t ic  and dynamic aerodynamic forces  and moments 

indicated i n  Figs. 2-14 and 2-15 govern the  s t a b i l i t y  of motion 

following a disturbance. 

and moments as regards the  poss ib i l i t y  of i n s t iga t ing  a whirl  

i n s t ab i l i t y .  Assume tha t  t he  propel ler  hub is executing a 

constant amplitude backward whir l  precessional motion. 

aerodynamic forces and moments generated by t h e  whirling motion 

at the ins tan t  t h e  hub is  at  i t s  maximum nose-up p i tch  a t t i t u d e  

are indicated i n  Fig. 2-16a. Note t h a t  t he  moments N(Va)  and 

Consider t h e  implication of these forces 

The 
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. . 
N(rJI) and the force Y(h$) are t h e  only aerodynamic disturbances 

which can induce (or  maintain) a whirl  t ion.  I n  pa r t i cu la r ,  note 

tha t  the yawing moment due t o  p i t ch  N(Va) is  i n  the same direc-  

t i on  as the  yawing ve loc i ty  f o r  t h e  backward whirl mode and hence 

cons t i tu tes  negative (destabi l iz ing)  aerodynamic damping €or the 

backward whirl  mode. To maintain system s t a b i l i t y  t h i s  negative 

damping must be balanced by o ther  pos i t ive  damping contributions,  

The aerodynamic port ion of t h i s  pos i t ive  damping is found i n  

N(r$) and Y(h$). A s imi la r  inspection of forces  f o r  the 

propel ler  hub In a nose-left  yaw a t t i t u d e  would give a pi tching 

moment due t o  yaw M(V$) in t he  same d i rec t ion  as the  whir l  

veloci ty  f o r  the  backward whir l  mode. Hence, a negative damping 

contribution is again indicated. Consequently, the  cross-s t i f fness  

moments N(Va) and M(V$J), being i n  phase with the  veloci ty  i n  

the backward whirl  mode, must be the  aerodynamic terms responsible 

f o r  whir l  f l u t t e r .  Since these cross-s t i f fness  moments are 

proportional t o  V2 while t h e  pos i t i ve  aerodynamic damping terms 

are proportional t o  V, the  des tab i l iz ing  moments w i l l  exceed the 

combined pos i t ive  damping moments at  some speed and p rec ip i t a t e  a 

whirl  i n s t a b i l i t y .  The nace l le  spr ing rates i n  conjunction with 

H(Va), M(h$), and H(r$) govern the static s t a b i l i t y  of the  

propel ler /nacel le  combination in pi tch .  As discussed i n  Ref. 2-23 

H(r$) is a cross-damping force which a c t s  as a s t i f f n e s s  t e r m  i n  

the  p i t ch  plane. H(Vcr) opposes t h e  pylon spr ing res tor ing  force. 

The cross-damping moment M(h9) acts as an aerodynamic c ross -s t i f fness  
e 

term since it is  inphase with the p i t ch  angle. 
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Now assume tha t  the  propel ler  hub is executing a constant 

amplitude whir l  i n  t h e  forward direct ion,  

act ing on t h e  hub a t  the maxiplum pitch-up a t t i t u d e  of its whirl 

motion lead to  the  s i t ua t ion  shown in  Fig. 2-16b. 

contradiction ex is t s .  Although a whirl motion i n  the  forward 

d i rec t ion  w a s  assumed, t he  only forces  and moments which can in- 

duce and sus ta in  a whirl are i n  the d i rec t ion  of the  backward 

whir l  mode. Hence, based on aerodynamic considerations, propeller 

whirl  f l u t t e r  can not occur i n  the  forward whirl  mode. 

The forces and moments 

Note t h a t  a 

I f  unsteady aerodynamic e f f e c t s  associated with the shed 

vo r t i c i ty  are considered as i n  Ref. 2-16, cross-s t i f fness  forces 

are induced which act i n  the  d i rec t ion  of t he  forward whir l  

velocity.  

mode and posi t ive damping t o  t h e  backward whirl  mode. 

terms, however, are small and can not des t ab i l i ze  the forward 

whirl  mode. Since the  backward whirl  mode is s t ab i l i zed ,  t h i s  

suggests, as indicated i n  Ref, 2-22, tha t  the  use of quasi-steady 

aerodynamics, which neglect the  e f f e c t s  of the  o s c i l l a t i n g  w a k e  

created by the shed vo r t i c i ty ,  is conservative. 

These contribute negative damping to  the  forward whirl  

These 

The foregoing discussion ha8 been conspicuous i n  its l ack  

of any mention of the r o l e  played by gyroscopic forces i n  the  

whirl  f l u t t e r  mechanism. 

completely va l id  i f  i n  some manner the propel ler  ro t a t iona l  

speed could be maintained but the gyroscopic forces taken to  be 

ident ica l ly  zero. 

namic considerations a mechanism f o r  whirl  f l u t t e r  i s  present: 

As a point of f a c t ,  the  preceding is 

In other  words, purely on the bas is  of aerody- 
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the  uncoupled p i t ch  and yaw nacel le  modes can be coupled 

aerodynamically t o  y ie ld  whi r l  modes, one of which w i l l  become 

unstable at  some forward speed. F lu t t e r  speeds based on the  neglect 

of gyroscopic forces are generally w e l l  beyond normal f l i g h t  speeds 

of propeller-driven aircraft. However, as pointed out  i n  Ref. 2-22 

the  presence of gyroscopic forces provides a mechanism whereby 

these f l u t t e r  speeds can be s igni f icant ly  reduced, bringing them 

w e l l  within speed ranges of in te res t .  The manner i n  which t h i s  is 

brought about is  outlined i n  the next section. 

(b) Role of Gyroscopic Forces i n  t h e  Whirl F lu t t e r  Mechanism 

Basically,  t h e  gyroscopic coupling pr inciple  involved 

is t h i s :  a ro t a t ing  propel ler  responds t o  a torque applied per- 

pendicular t o  i t s  spin ax i s  by precessing, the precession vector 

being perpendicular t o  both the spin and torque axes ra ther  than 

pa ra l l e l  t o  the torque ax i s  as would be the  case f o r  a non-rotating 

propeller.  In  the  absence of aerodynamic forces,  a r ig id  non- 

ro ta t ing  propeller mounted on a f lex ib ly  supported nacel le  exhi- 

b i t s  two modes of vibrat ion,  one i n  p i t ch  and one i n  yaw. Each 

can occur independently of the other  when the propel ler  is  not 

rotating. 

neglecting aerodynamic forces) gyroscopic forces e x i s t  which 

couple these modes together i n to  two whirl  modes characterized by 

the d i rec t ion  i n  which the propel ler  hub whirls o r  precesses 

about its undeflected shaf t  axis. As gyroscopic coupling is 

increased by increasing the propel ler  ro ta t iona l  speed, the  whirl  

However, when t h e  propel ler  is ro t a t ing  (st i l l  
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mode for  which the  precession d i rec t ion  is t h e  same as t h e  pro- 

p e l l e r  ro ta t ion  has an increasing frequency while the  whirl mode 

f o r  which the  precession is i n  a d i rec t ion  opposite t o  the  

propel ler  rotat ion has a decreasing frequency. 

termed the  forward or  posigrade whirl  

backward OK retrograde whirl  mode. 

The former is 

de and the  lat ter the 

Pylon p i tch  and yaw are phased a t  90' t o  each other  i n  the 

whirl  mode. Since gyroscopic forces are proportional t o  velocity 

they are 90' out-of-phase with p i tch  and yaw displacement through- 

out a cycle of whirl. 

forces have the  necessary phasing f o r  a n e t  energy input t o  t h e  

system. Gyroscopic forces are conservative however, the pos i t ive  

work done by the  gyroscopic couple i n  one plane being exactly 

balanced by the negative work i n  the other  plane (Ref. 2-24 ) .  

Hence gyroscopic forces contribute ne i ther  posi t ive nor negative 

damping t o  system motion but merely couple p i tch  and yaw together 

at 90' t o  form two whir l  mdes.  The conservative nature  of gyro- 

scopic forces can be demonstrated ind i r ec t ly  by solving the  

f l u t t e r  equations f o r  the system i n  a vacuum f o r  t he  case of no 

s t ruc tu ra l  damping as a function of propel ler  ro ta t iona l  speed. 

Inspection of t h e  resu l tan t  complex roots  and modes w i l l  show tha t  

the damping pa r t s  of t h e  eigenvalues will be zero and the  modes 

will a l l  indicate  a 90' phase r e l a t ion  between p i tch  and yaw. 

conclusion then is t h a t  gyroscopic act ion i n  i t s e l f  can not 

p rec ip i t a t e  a divergent whirl  motion. 

It might thus appear t h a t  gyroscopic 

The 
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Although t h e  gyroscopic forces  are ne i the r  s t a b i l i z i n g  nor 

des tab i l iz ing  i n  a dynamic sense they re shown in  Ref, 2-22 t o  

contr ibute  i n  e f f e c t  s t a t i c a l l y  t o  decreased dynamic s t a b i l i t y  i n  

the  backward whir l  mode. Although it w a s  not  pointed out  i n  

Ref. 2-22, gyroscopic forces  have a corresponding s t ab i l i z ing  

e f f e c t  on t h e  forward whir l  mode. Both these asser t ions  can be 

ve r i f i ed  with the  a id  of Fig. 2-17, which shows a propel ler  hub 

t rac ing  out  a whi r l  node i n  an as y e t  unspecified direct ion.  The 

in-vacuum equations of motion applicable a t  four instanttaneous 

posi t ions on the path are indicated. These equations are inde- 

pendent of t h e  whir l  direct ion.  Now assume a constant amplitude 

whir l  i n  t h e  backward d i r ec t ion  and consider t he  s i t ua t ion  at 

posi t ion 1 say, as r e g a r d s t h e  sign of the  gyroscopic term 

2s21Ra compared t o  t h e  physical spring term K+J,. 

t he  lower par t  of t he  f igure  ind ica tes  t ha t  at  posi t ion 1 

pos i t ive  and a is negative. Hence the  gyroscopic term is of 

The t a b l e  i n  

J, is 

opposite s ign compared t o  the  spring term d thus has a 

negative" spr ing e f f e c t ,  t ha t  is i t  tends t o  increase the  whir l  I 1  

amplitude s t a t i c a l l y .  The same is t r u e  a t  t h e  o ther  posi t ions on 

the path. 

is i n  t h e  forward direct ion.  I n  t h i s  case both I) and a are 

Now consider t he  s i t u a t i o n  a t  pos i t ion  1 i f  t he  whir l  

pos i t ive  and hence the gyroscopic force has a pos i t ive  spring 

e f f ec t ,  tending t o  reduce the  amplitude of whirl s t a t i c a l l y .  

The same is t r u e  a t  any other  posit ion.  

d 
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It w a s  shown e a r l i e r  t h a t  aerodynamic cross-stiffness moments 

N(Va) and M(V$) are the  driving moments f o r  backward whirl  

f l u t t e r .  For a f ixed forward f l i g h t  speed these moments increase 

with whirl amplitude. Now, since the  gyroscopic forces have j u s t  

been shown t o  increase the  amplitude of t h e  backward whirl  mode, 

t h i s  has t h e  e f fec t  of increasing the  destabi l iz ing aerodynamic 

cross-s t i f fness  moments. This is  the  means by which gyroscopic 

forces can reduce the backward whirl  f l u t t e r  speeds t o  v d u e s  

within the operating envelopes of propeller-driven a i r c r a f t .  

Conversely, since gyroscopic forces reduce the  whirl  amplitude of 

the forward w h i r l  mode they s t a b i l i z e  the  forward whirl  mode. 

e f f ec t s  of the gyroscopic forces are c lear ly  brought out i n  Fig. 

2-18 which shows the  var ia t ion  of modal damping i n  both the  forward 

and backward whirl modes with continually decreasing gyroscopic 

coupling. The results shown are f o r  a non-isotropically supported 

nacelle at a subc r i t i ca l  airspeed. The gyroscopic forces were 

ana ly t ica l ly  reduced by multiplying the  gyroscopic coupling terms 

i n  the equations of motion by numbers ranging from 1.0 t o  0.0 and 

then solving the resu l t ing  f l u t t e r  equations, 

t o t a l  p i tch  and yaw i n e r t i a s  constant. 

t he  damping of the  backward whirl  mode with increase i n  the  

gyroscopic coupling terms is  evident. 

seen t o  be only modestly s tabi l ized.  

These 

This held the 

A s igni f icant  reduction i n  

The forward whirl  mode i s  

Summarizing: based so le ly  on aerodynamic considerations the  

aerodynamic cross-s t i f fness  moments N(Va) and M(V$J) provide 

the coupling necessary t o  induce an unstable whirl  motion. I n  the  

d 
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presence of gyroscopic forces  the  backward whirl  mode is  

addi t ional ly  destabi l ized w h i l e  t h e  forward whir l  mode is s tab i -  

l ized. Propel ler  whir l  f l u t t e r ,  when i t  occurs, invariably occurs 

i n  the  backward whir l  mode. 

The Mechanism of Proprotor/Pylon I n s t a b i l i t y  

A flapping proprotor on a f l ex ib ly  supported pylon can a l so  

exhib i t  an i n s t a b i l i t y  similar i n  nature  t o  propel ler /nacel le  

whirl  f l u t t e r .  In  fact, t h e  fundamental cause of proprotor/pylon 

i n s t a b i l i t y  is  the  same as t h a t  of propel ler  whir l  f l u t t e r ,  namely, 

the aerodynamic loads generated by precession. However, because 

of t h e  addi t iona l  f lapping degrees of freedom of the  proprotor the  

manner i n  which the precession-generated aerodynamic forces  act 

on the  pylon and hence promote whirl  is s ign i f i can t ly  d i f f e ren t .  

Because a propel ler  is r i g i d l y  attached t o  i t s  sha f t  i t  is  con- 

st rained t o  follow any nace l le  motion i n  p i t ch  and yaw and the aero- 

dynamic cross-s t i f fness  moments which dr ive  t h e  backward whirl  

mode act d i r e c t l y  on t h e  nacelle.  In  t h e  case of a free-to-flap 

proprotor*, no air load moments can be t ransferred t o  the  pylon. 

Consequently, i n  contradis t inct ion t o  a propel ler ,  a i r load  moments 

can not be the d i r e c t  cause of any proprotor/pylon whirl  

i n s t a b i l i t y .  Aerodynamic forces  must then cons t i tu te  t he  source of 

*A free-to-flap proprotor is taken t o  be one which can not t r a n s f e r  
any a i r load  moments t o  the  pylon. 
s i te  extreme t o  a r i g i d  fixed-blade propel ler .  
proprotor designs would f a l l  between these two extremes, but c loser  
t o  t h e  free-to-flap s i tua t ion .  
rea l ized  i n  prac t ice  by a ro to r  having cen t r a l  f lapping hinges 
or a gimbaled hub, w i t h  zero flapping r e s t r a i n t .  

As such it represents the oppo- 
All prac t i ca l  

Such a configuration would be 
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any ne t  energy input i n t o  a whirl  mode. Some of t h e  sa l i en t  feat- 

ures of t h e  means by which t h i s  is  brought about w i l l  be discussed 

below. 

H a l l  (Ref. 2-25). 

(a) Precession of a Free-to-Flap Proprotor 

The methodology was motivated by t h e  o r ig ina l  work of 

As noted above, a free-to-flap proprotor is unable t o  

transmit any moments t o  the pylon. 

able  t o  transmit any moments t o  t h e  proprotor. 

cessional motion of t he  pylon there  is no means by which the pylon 

can physically constrain t h e  proprotor t o  follow i ts  precessional 

motion. This suggests t ha t  a i r loads  must, i n  some manner, consti- 

t u t e  the necessary ingredient i n  the  proprotor precession mechanism. 

Recall t h a t  i n  t h e  case of a propel ler  a i r loads  are a consequence 

of precession ra ther  than t h e  cause. In  a vacuum the  proprotor 

would not precess i n  response t o  pylon p i t ch  o r  yaw osc i l l a to ry  

motions s ince the  pylon would have no way of "tell ing" the prop- 

ro to r  t h a t  i t  should precess. The proprotor d i s c  would merely 

o s c i l l a t e  edgewise in  space remaining p a r a l l e l  t o  i t s  o r ig ina l  

posit ion.  A f lapping proprotor is es sen t i a l ly  a gyroscope and 

requires  a couple across  i t s  ro tor  disk 90 

angular motion of t he  pylon t o  make i t  precess in  response to  

the  pylon motion. Th9s is i l l u s t r a t e d  i n  Fig. 2-19. The couples 

required t o  precess t h e  proprotors i n  response t o  t h e  a i r c r a f t  

upward p i tch  rate follow d i r e c t l y  from the  gyroscopic ru le .  To 

generate these couples resu l tan t  force unbalances normal t o  the 

proprotor plane i n  the  d i rec t ions  s h m  on each s ide  are necessary. 

Conversely, t h e  pylon is  un- 

During a pre- 

0 out of phase with any 

i 
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These force unbalances can only be generated aerodynamically. The 

a i r loads  necessary t o  precess the proprotor w i l l  be generated only 

if t h e  blade angle of a t t ack  is  cyc l ica l ly  changed, with increasing 

l i f t  on one half  of the  d i s c  and decreasing l i f t  on t h e  other  ha l f ,  

i n  a manner t o  create the  necessary couples. 

Fig. 2-20 fo r  the case of motion i n  the  p i tch  direct ion.  

hel icopter  rotor  t h i s  cycl ic  blade angle of a t tack  is introduced 

through af fec t ing  the angular posi t ion of the tip-path-plane with 

respect t o  the proprotor control  plane (swashplate). This is  

because it  is the control  plane and not the  shaf t  (mast) t h a t  deter-  

mines the ro tor  behavior i n  space. The means by which t h i s  is 

accomplished is i l l u s t r a t e d  i n  Figs. 2-20 and 2-21. The proprotor 

d i sc  lags  the sha f t  angular rate u n t i l  s u f f i c i e n t  f lapping is 

present t o  produce the  necessary couple aerodynamically by increas- 

ing l i f t  on the  downgoing s ide  of the d i sc  and decreasing i t  on the  

upgoing side. This circumstance arises because, r e l a t ive  t o  the  

swashplate (control plane), t h e  blades on the  upgoing s ide  have a 

forward flapping rate, with a maximum when i n  the horizontal  posi- 

t ion ,  which adds t o  t h e  forward f l i g h t  speed, while on the downgoing 

s ide  of t h e  d isc  the  blades have a rearward flapping rate, with a 

maximum when i n  t h e  horizontal  posit ion,  which subt rac ts  from the 

forward f l i g h t  speed. The resu l tan t  perturbation lifts are shown 

i n  Fig. 2-21. The moments a r i s i n g  from the  axial  components of the  

perturbation l i f t  change, AFS, sum t o  produce the  necessary moment 

t o  precess the  proprotor. 

forces are addi t ional ly  g nerated. 

This is i l l u s t r a t e d  i n  

As i n  the  

Note tha t  perturbation inplane shear 

These sum t o  produce a 

d 
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resu l tan t  v e r t i c a l  and lateral force. Note tha t  t he  v e r t i c a l  compo- 

nent 

cons t i tu tes  a negative (destabil izing) damping force f o r  pylon p i t ch  

motion. S i m i l a r  r e su l t s  would be obtained fo r  an assumed motion i n  

t h e  yaw plane. 

combination, which can not be dynamically des tab i l ized  i n  a s ingle  

plane, a proprotor/pylon system can experience an i n s t a b i l i t y  with 

e i t h e r  t h e  pylon p i t ch  o r  yaw degrees of freedom locked out. 

general case of a proprotor a i r c r a f t  executing longi tudinal  and 

l a t e r a l  o sc i l l a t ions  about axes through i ts  center of gravi ty  t h e  

resu l tan t  inplane shears would cons t i t u t e  negative damping i n  both 

p i t ch  and yaw simultaneously. 

quency t h i s  can des t ab i l i ze  e i the r  t h e  a i r c r a f t  rigid-body motion 

o r  t h e  elastic motion of t h e  proprotor/pylon/wing system. 

tip-path-plane l ags  the  swashplate a component of the  thrus t  a c t s  

normal t o  the  m a s t  and opposite i n  phase t o  the des tab i l iz ing  

shear forces  and cons t i tu tes  pos i t ive  damping. 

r a t i o s ,  such as occur i n  low speed hel icopter  f l i g h t ,  the  de- 

s t ab i l i z ing  shears are small and t h e  net damping is pos i t ive  (Ref. 

2-26). However, a t  t he  advance r a t i o s  typ ica l  of high-speed prop- 

ro to r  

s t a b i l i z i n g  force produced by the  tilt of t h e  thrust vector  and 

the  resu l tan t  force i s  i n  the d i rec t ion  t o  give a negative damping 

moment. 

i n s t a b i l i t y  r e su l t s .  

AH acts i n  the  d i rec t ion  of t h e  upward p i t ch  rate and thus 

This implies t h a t  i n  contrast  t o  a propel ler /nacel le  

In the  

Depending on t h e  exc i ta t ion  fre-  

Since the 

A t  low advance 

f l i g h t  t he  shears become su f f i c i en t ly  l a r g e  t o  o f f s e t  the  

When t h i s  overcomes t h e  pos i t ive  damping of t h e  system 
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(b) Role of Precession-Generated Shear Forces i n  Whirl F lu t t e r  

Although a proprotor/pylon i n s t a b i l i t y  i s  possible  i f  

e i t h e r  the  pylon p i t ch  o r  yaw degrees of freedom are r ig id ly  

restrained the  general case of f l ex ib l e  restraints i n  both pylon 

degrees of freedom permits of a w h i r l  f l u t t e r  i n s t a b i l i t y  i n  the  

classical" sense. This can be demonstrated i n  the  same manner I t  

employed fo r  the propel ler  earlier, namely, assuming a constant 

amplitude whirl  i n  t h e  forward and backward d i rec t ions ,  determining 

the forces  which act on the  pylon during the  whirl  motion, and 

assessing whether o r  not they cons t i tu te  a poten t ia l  source of 

negative damping. 

involved t h i s  would be qu i t e  d i f f i c u l t  t o  do qua l i ta t ive ly .  

Because of t h e  addi t ional  degrees of freedom 

Con- 

sequently, t he  motion-dependent forces  have been evaluated using 

an ana ly t ica l  method developed herein and embodied i n  computer 

program HFORCEl. 

Assume the proprotor t o  be executing a low-frequency constant 

amplitude whirl  i n  the backward direct ion.  The shear forces  

act ing on the  sha f t  when it is at i t s  maximum upward p i tch  a t t i t u d e  

are shown i n  Fig. 2-22a. Although the  forces  are generally 

functions of a l l  t h e  degrees of freedom and t h e i r  f i r s t  t i m e  

der ivat ive,  t h e i r  primary dependency is on the  coordinates 

enclosed i n  parentheses. The d i r e c t  damping force Y(JI, bl) is  

inphase with t h e  backward whirl  veloci ty  and hence contr ibutes  

. .  

negative damping t o  the  backward whirl  mode. Note tha t  t h i s  force 

arises from a yaw rate and t h a t  i t  i s  r e s i s t ed  by 

cross-s t i f fness  force which acts l i k e  a pos i t i ve  damping t e r m .  

Y(a, al), a 

d 
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S t a t i c  s t a b i l i t y  i s  determined 

H ( a ,  a ) and the cross-damping 1 

by the d i r ec t  s t i f f n e s s  term 

term H($, b,) which ac t s  as a 
. .  

spring term. 

any other posit ion.  

the  same point for  the case of a forward whirl  motion, as shown i n  

Fig. 2-22b, indicates  that forward whirl  f l u t t e r  i s  addi t ional ly  

possible. 

assumed whirl motion, no contradiction i s  found t o  ex i s t  which would 

negate the poss ib i l i t y  of whirl  i n  e i the r  the  forward or backward 

direct ion.  Therefore a proprotor/pylon can exhibit  whi r l  f l u t t e r  

i n  e i the r  the forward or backward whirl modes. 

Similar results and conclusions will be reached a t  

A similar assessment of the conditions a t  

Hence, based on the  forces which a re  induced by an 

Because the  lag of the  proprotor tip-path-plane i s  a function 

of the  pylon precessional whirl  frequency, t he  precessional air- 

loads and hence the  destabi l iz ing shears are inherently frequency- 

dependent. Now, depending on the  whirl frequency ( i . e . ,  the  pylon 

s t ruc tu ra l  spring rates) the magnitudes and/or signs of the  de- 

s t ab i l i z ing  proprotor shears can change. 

Chapter 4 ) .  With reference t o  Fig. 2-22, t h i s  again indicates  that 

the proprotor/pylon whirl  i n s t a b i l i t y  can be i n  e i t h e r  direct ion.  

In  both the  forward and backward whirl  modes the  shear forces due 

t o  flapping a re  phased i n  a d i rec t ion  t h a t  contributes t o  i n s t a b i l i t y  

a t  high advance r a t io .  

moments of a propeller are independent of t he  frequency of nacel le  

motions because there  i s  no lag of the  propeller disc r e l a t i v e  t o  

the shaft. 

(This w i l l  be shown i n  

In  contrast ,  the  aerodynamic forces and 
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I f  proprotor aerodynamic moments can be t tansferred t o  the  

pylon they would modify the  foregoing r e s u l t s  only t o  the  extent  

t ha t  they would be addi t ional ly  s t ab i l i z ing  o r  destabi l iz ing,  

s ince t h e i r  magnitude and s ign would a l so  be a function of the  

pylon whir l  frequency. 

shear forces i n  Fig. 2-22, but ac t ing  on t h e  proprotor, are 

summarized i n  Fig. 2-23. As inspection of t h i s  f igure  indicates ,  

i f  these moments can be t ransferred t o  the pylon (through a flapping 

spring say) they could have a s t ab i l i z ing  o r  des tab i l iz ing  

influence on whirl. 

The aerodynamic moments associated with the  

The key points  of the foregoing can be summarized as follows: 

(1) The basic  destabi l iz ing fac tors  on proprotor/pylon motion 

are the  inplane shear forces  generated by t h e  air load 

moments required t o  precess the  ro to r  i n  space i n  response 

t o  sha f t  motions. 

(2) In  addition t o  a t r u e  whirl  i n s t a b i l i t y  involving both 

p i tch  and yaw motions a proprotor/pylon system can 

exhibi t  a dynamic i n s t a b i l i t y  i n  e i t h e r  the p i t ch  o r  yaw 

di rec t ion  depending on the  pylon support conditions. 

(3) Flapping during precession and t h e  associated forces  and 

moments are frequency-dependent. 

The des tab i l iz ing  shear forces  have a f i r s t  order e f f e c t  on 

both a i r c r a f t  rigid-body s t a b i l i t y  and the aeroe las t ic  s t a b i l i t y  

of t he  proprotor/pylon/wing system. 

dependent on the  frequency response of t h e  tip-path-plane relative 

to  the  swashplate s t a b i l i t y  w i l l  be strongly sensitive t o  those 

Since these shears are 
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parameters which control  t he  response rate as w e l l  as the  pylon 

support conditions. Two of t h e  more important ro tor  design para- 

meters which a f f ec t  the  frequency response are blade flapping 

r e s t r a i n t  and pitch-flap coupling. 

design parameters on proprotor/pylon s t a b i l i t y ,  the  frequency 

response charac te r i s t ics  of t he  proprotor shear forces and moments, 

and blade flapping w i l l  be the  subject of t h e  ana ly t ica l  trend 

s tudies  of Chapter 4. 

The e f f e c t s  of several such 

d 



CITED REFERENCES 

2-1. Dulberger, L. H. : "Advanced Rotary-wing Aircraft", Space/ 
Aeronautics, April 1967, pp . 68-82. 

2-2. Ludi, L. H.: "Composite Ai rcraf t  Design", Proceedings of the 
23rd Annual National Forum of the  American Helicopter Society, 
May 1967. 

2-3. Wernicke, K. G.: " T i l t  Proprotor Composite Ai rcraf t ,  Design 
S ta t e  of t he  A r t " ,  Proceedings of t h e  24th Annual National 
Forum of t h e  American Helicopter Society, May 1968. 

2-4. Brandt, D. E.: "Aeroelastic Problems of Flexible  V/STOL 
Rotors'', Presented a t  t h e  AGARD 34th Flight Mechanics Panel 
Meeting on "Aeroelastic Ef fec ts  from a Fl ight  Mechanics 
Standpoint", Marseilles, France, April 1969. 

2-5. Borst, H. V. and B. Fry: "Propeller and Rotor VTOL Concepts 
and Their Relative Places i n  t h e  Mission Spectrum", Presented 
a t  the U. S. Air Force V/STOL Technology and Planning 
Conference, L a s  Vegas, Nevada, September 1969. 

2-6. Lichten, R. L.: "Design Problems and Solutions f o r  Five Types 
of Low-Disc-Loading, High-speed VTOL Aircraft", Presented 
a t  t he  7th Internat ional  Congress of Aeronautical Sciences, 
Rome, I t a l y ,  September 1970. 

2-7. DeTore, J. A. and T. M. Gaffey: "The Stopped-Rotor Variant 
of t he  Proprotor VTOL Aircraft", Presented a t  the  AIAA/AHS 
VTOL Research, Design and Operations Meeting, Atlanta, 
Georgia, Feb. 1969. 

2-8. Engle, F. V. and K. W. Sambell: "Performance Aspects of 
Folding-Proprotor V/STOL Aircraft",  Presented a t  t h e  25th 
Annual National Forum of the  American Helicopter Society, 
May 1969. 

2-9. T i l l e r ,  F. E. and R. Nicholson: "Stab i l i ty  and Control 
Considerations f o r  a Tilt-Fold-Proprotor Aircraft", Presented 
a t  t he  26th Annual National Forum of the  American Helicopter 
Society, June 1970. 

2-10. DeTore, J. A.: "Lift/Propulsion System Size-Selection 
Considerations f o r  Stoppable Rotor VTOL Aircraft", Presented 
a t  t he  U. S. Air Force V/STOL Technology and Planning 
Conference, L a s  Vegas, Nevada, September 1969. 



51 

2-11. Taylor, E.  S. and K. A. Browne: "Vibration I so la t ion  of 
Aircraf t  Power Plants", Journal of the  Aeronautical Sciences, 
Vol. 6, Dec. 1938, pp. 43-49. 

2-12. Scanlan, R. H. and J .  C. Truman: "The Gyroscopic Effect  of 
a Rigid Rotating Propeller on Engine and Wing Vibration Modes". 
Journal of the  Aeronautical Sciences, Vol. 17, O c t .  1950, 
pp. 653-659, 666. 

2-13. Brower, W. B. and R. H. Lassen: "The Effec ts  of Gyroscopic 
Coupling of Propulsion Units on t h e  Vibration Modes of a 
Dynamically S i m i l a r  Model of t h e  Lockheed Consti tution 
Airplane", Masters Thesis, Rensselaer Polytechnic I n s t i t u t e ,  
Troy, New York, June 1950. 

2-14. Abbott, F. T.,  Jr., H. N. Kelly, and K. D. Hampton: 
"Investigation of 1/8-Size Dynamic-Aeroelastic Model of the 
Lockheed Electra Airplane i n  t h e  Langley Tsansonic Dynamics 
Tunnel", NASA TM SX-456, November 1960. 

2-15. Reed, W. H., 111, and S. R. Bland: "An Analytical  
Treatment of Ai rcraf t  Propel ler  Precession Ins tab i l i ty" ,  
NASA TN D-659, 1961. 

2-16. Houbolt, J. C. and W. H. Reed, 111: "Propeller-Nacelle 
Whirl Flut ter" ,  Journal Aerospace Sciences, Vol. 29, 
March 1962, pp. 333-346. 

2-17. Zwaan, R. J. and H. Bergh: "Propeller-Nacelle F lu t t e r  of 
t h e  Lockheed Electra Aircraft",  Rept. F288, N a t l .  Lucht-en 
Ruimtevaartlab, Amsterdam, Feb. 1962. 

2-18. Sewall, J. L.: "An Analytical Trend Study of Propel ler  
Whirl I n s t a b i l i t y ,  NASA TN D-996, 1962. 

2-19. Bland, S. R. and R. M. Bennett : "Wind-Tunnel Measurement 
of Propel ler  Whirl-Flutter Speeds and Sta t ic -Stab i l i ty  
Derivatives and Comparison with Theory", NASA TN D-1807, 
1963. 

2-20. Bennett, R. M. and S. R. Bland: "Experimental and 
Analytical Invest igat ion of Propel ler  Whirl F l u t t e r  of a 
Power P lan t  on a Flexible  Wing," NASA TN D-2399, 1964. 

2-21. Anon.: "Airplane Airworthiness; Transport Categories - 
Flu t t e r  , Deformation, and Vibration Requirements", Civ i l  
A i r  Regulations Amendment 4b-16, FAA, August 1964. 

2-22. Baker, K. E., R. Smith, and K. W. Toulson: "Notes on 
Propeller Whirl Flutter",  Canadian Aeronautics and Space 
Journal,  Vol. 11, O c t .  1965, pp. 305-313. 

d 



52 

2-23. Reed, W. H. ,  111: "Review of Propeller-Rotor Whirl Flutter", 
NASA TR R-264, 1967. 

2-24. Griff in ,  J. A., Jr. : "A General Approach t o  the  Vibration 
and F lu t t e r  Analysis of a Gyroscopically Coupled Elastic 
System", Report No. 2-53450/2R50079, Chance Vought Corp., 
Ju ly  1962. 

2-25. H a l l ,  W. E.  : "Prop-Rotor S tab i l i t y  a t  High Advance Ratios", 
Journal of the American Helicopter Society, June 1966. 

2-26. h e r ,  K. A.: Theory of Helicopter Damping i n  Pi tch o r  
Roll and a Comparison with Fl ight  Measurements", NACA TN 
2136, 1950. 

d 



53 

W 
W cv 

d 



54 

m 
k 
a) u 

U 
3 
9 
P 
k 
1 

5 
E u 
a) 
P 

k 
0 w 

k 
0 u 
0 
k 
I u 
rl 
4 
4-l 

a) 
k 

rl 
Fr 

d 



55 

. 
n 

0 u 
. 

& 
a, 
U a 
0 
ct 
*rl 
rl 

4 

a, 

rn 
a, 
& 

2 

& 
0 
U 
0 
& 
I 
U 
rl 
.I4 
i3 
I . 

cr) 
I cv 



d 



57 

Figure 2-5.- A Boeing-Vertol tilt-rotor rescue aircraft. 

d 



58 

k 
a, u 

0 
3 

I 

d 



59 

a 
0 
U 
TI 
4 

I 

d 



60 

. 
0 u 

cd 
w 
0 



61 

C 

C 
4.J 
v) 

3 

d 



62 

4-1 
0 



U 
4-1 
td 
Fc 
0 
Ll 
1-I 
td 
a, 
5 
c) 
v) 
a, 
Fc 

4 
t;l 
a, 
v) 

& 
0 
U 
0 
$4 
I 
U 
rl 
d u 

4 
I 
rl 
rl 
I 
N 

d 



64 

d 



65 



66 

a 
91 a 
3 
4 
r) 
0 
0 
V 

I 
N 
l-l 
I 

N 



67 

Crossflow hm 

___cp. 
V 

(b) Pitch rate 

Figure 2-13.- Perturbation airflows and resultant blade element l i f t s  
induced by a pitching propeller. 
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Figure 2-14.- Resultant perturbation airloads acting on a pitching 
propeller. 
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Figure 2-15.- Resultant perturbation airloads acting on a yawing 
propeller. 
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Figure 2-17. - Establishment of the "static" nature of the gyroscopic 
coupling forces. 
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(a) Backward whirl 

(b) Forward whirl 

Figure 2-22.- Airload forces acting on a whirling proprotor (Position 
of maximum posit ive pitch attitude shown). 

d 



77 

(a) Backward whirl 

(b) Forward whirl 

Figure 2-23.- Airload moments acting on a whirling proprotor 
(Position of maximum positive pitch attitude shown). 



MATHEMATICAL FORMULATION FOR ANALYSIS OF 
PROPROTOR/PYLON AEROELASTIC STABILITY 

Introduction 

The equations describing t h e  perturbed motion of an idealized 

proprotor/pylon/wing system encastr6 

ro to r  f u l l y  converted forward are developed i n  t h i s  chapter. 

addition t o  providing t h e  ana ly t ica l  basis from which t o  assess t h e  

aeroe las t ic  s t a b i l i t y  of t h e  system these equations furnish t h e  

basis f o r  calculat ing t h e  frequency response cha rac t e r i s t i c s  of t he  

proprotor force and moment der ivat ives  (Appendix C) and blade flap- 

ping der ivat ives  (Appendix D )  . 
prac t ice  i n  dealing with complicated s t ruc tures  recourse is had t o  

the  approximation of rep lac ingthe  continuous system having an i n f i -  

n i t e  nuudber of degrees of freedomby an equivalent d i scre te  system 

having a f i n i t e  number of degrees o f  freedom. 

f i ca t ion  i s  introduced by t h e  expedient of physical d i scre t iza t ion  

o r  

normal mode approach. 

at t h e  wing root and the prop- 

I n  

Following customary engineering 

Herein, t h i s  simpli- 

I t  lumping" i n  contrast  t o  mathematical d i sc re t i za t ion  through a 

The f a c t  t h a t  f l u t t e r  invest igat ions require  consideration of 

only small motions from a steady-state f l i g h t  condition allows both 

a s t ruc tu ra l  and aerodynamic s impl i f ica t ion  i n  t h e  ana ly t i ca l  formu- 

l a t ion .  S t ruc ture l ly ,  recourse can be d i r e c t l y  made t o  w e l l -  

established small vibrat ion theory as a basis from which t h e  

d 
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dynamic theory of f l u t t e r  can proceed; aerodynamically, the  incre- 

Eeotal changes i n  the external  forces can be taken as l i n e a r  func- 

t i ons  of the  disturbance displacements, ve loc i t i e s ,  and 

accelerations.  

The pertinent equations of motion are derived using the 

Lagrangian approach. 

mode i n  which the  proprotor i s  fully-converted forward the mathe- 

matical convenience of reducing the resu l t ing  equations of motion 

having time-dependent coeff ic ients  (dependent on blade azimuth 

posit ion 

real ized under cer ta in  simplifying assumptions f o r  the blade 

motions. 

eigenvalue formulation f o r  assessing system s t a b i l i t y ,  thereby 

obviating the need f o r  a more involved solution of the  equations of 

motion by numerical. integration. The reader w i l l  r e c a l l  t ha t  the  

ana ly t ica l  philosophy adopted i n  t h i s  d i sser ta t ion  as outlined i n  

Chapter 1, par t icu lar ly  as regards the  intended preliminary design 

nature of the  analyses, recommended an eigenvalue formulation i n  

contrast  t o  a time his tory  solution f o r  each degree of freedom. 

eigenvalue approach t o  the "solution" of t h e  equations of motion 

provides a means f o r  quickly establ ishing trends and i so l a t ing  the  

e f f ec t  of parameters on s t a b i l i t y  whereas considerable computer 

t i m e  and user judgment i s  generally associated w i t h  a t i m e  h i s tory  

solution. 

Since a t ten t ion  is  directed t o  the  f l ight  

J I )  t o  those having time-independent coeff ic ients  can be 

This expedient is exercised herein i n  order t o  permit an 

An 

d 



Considerations influencing various aspects of the  s t r u c t u r a l  

idea l iza t ion ,  par t ic i l la r ly  t h e  proprotor idea l iza t ion ,  are dis- 

cussed, and the spec i f ic  assumptions employed are pointed out. 

Because t h e  r e su l t i ng  equations of m t i o n  contain non-proportional 

damping a transformation of t h e  equations i n t o  a form amenable t o  

an eigenvalue solut ion necess i ta tes  adoption of a method used t o  

uncouple t h e  forced equations of motion i n  t h e  general dynamic 

response problem. 

applying t h e  appropriate aspects t o  thepresentequat ions.  

t e rp re t a t ion  of the complex eigensolutions i s  discussed and a 

simple method f o r  ascer ta ining the  d i rec t ion  of pylon w h i r l  shown. 

Some general comments concerning t h e  solut ion of the s t a b i l i t y  

determinant conclude t h e  chapter. 

These methods are summarized b r i e f l y  p r i o r  t o  

The in- 

Derivation of the Equations of  Motion 

Formulation of the  equations of motion reduces t o  two funda- 

mental problem types:  (1) A s t r u c t u r a l  dynamic o r  mechanical vi- 

brat ion problem i n  which consideration is given t o  the  specifica- 

t i o n  of t h e  equations of motion f o r  an e l a s t i c  system under t h e  

influence of ex terna l  forces  and in t e rna l  damping. 

i s  t h e  required p r i o r  determination of t h e  i n e r t i a l  and e l a s t i c  

cha rac t e r i s t i c s  of  t h e  system. 

incremental changes i n  t h e  aerodynamic forces  due t o  mall changes 

i n  the degrees of freedom are desired ( i . e . ,  t he  generalized 

aerodynamic forces) .  The dynamic portion of the t o t a l  aero- 

dynamic loading i s  of i n t e r e s t ,  the  steady forces  making no 

Implici t  here 

(2) An aerodynamic problem i n  which 
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contribution t o  the  disturbed motion within small perturbation 

theory. 

ingredients leads t o  a systematized statement of the  general dynam- 

i c  response problem, a spec ia l  case being t h e  f l u t t e r  problem, 

In t e re s t  i n  t h i s  sect ion is directed toward a detailed expose' of 

the dynamic and a e r o d y n d c  aspects of t h e  subject mathematical 

model and the fornulation of the  system equations of motion. 

( a) Lagrange ' s Equation 

A methodical blending of these dynamic and aerodynamic 

Lagrange's equation i s  a consequence of Hamilton's variational. 

pr inciple  which, extended t o  include nonconservative forces ,  has 

the form ( R e f .  3-11 r2 6(T - 
tl 

Here T is the k ine t i c  e n e r a  

V + W )  d t = O  

of t h e  system, V is t h e  poten t ia l  

energy derivable from a po ten t i a l  function, and W represents t h e  

work done by a l l  nonconservative forces.  Lagrange's equation f o r  

a holonomic system, as derivable from Eq. 3-1, assumes t he  form 

where T and V have the same def in i t ion  as i n  Eq. 3-1, Qr are 

the  generalized nonconservative forces (which are related t o  t h e  

v i r t u a l  work done by t h e  aerodynamic fo rces ) ,  and 

generalized coordinates. 

p. are the  

d 
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In  the  fom of Lagrange's equation given i n  Eq. 3-2 no expli- 

c i t  account is  taken of in te rna l  damping. The complicated nature 

of the  true damping mechanism i n  typ ica l  aeroelast ic  s t ructures  

generally precludes a precise mathematical description of the  ob- 

served damping character is t ics .  Hence, i f  damping must be included 

i n  the  analysis it can only be accounted f o r  i n  an approximate 

manner. Furthermore, mathematical t r a c t a b i l i t y  suggests t h a t  any 

approximate damping theory so introduced maintain the  mathematical 

l i nea r i ty  of the equations of motion. Fortunately, damping is  

usually small i n  most s t ructures  and a simplified concept of damp- 

ing which i s  eas i ly  incorporated in to  the  equations of motion can 

be used t o  account f o r  the actual mechanism of energy dissipation. 

Two damping models are i n  general use f o r  introducing a l inea r  

damping l a w  i n to  an already l inear ized structural motion: the  

hysteret ic  o r  s t ruc tura l  damping model and the viscous damping 

model. 
* 

The hys te re t ic  model of damping is  based on the experimen- 

t a l  observation that i n  simple harmonic motion many s t ruc tura l  

materials exhibit  an energy diss ipat ion per cycle which i s  propor- 

t i ona l  t o  the s t r a i n  amplitude squared but independent of the 

frequency at which the  s t r a i n  is  applied. Thus t h i s  mo,del of damp- 

ing i s  rigorously val id  only f o r  harmonic motion. The viscous 

* 
An excellent account of these two types of damping, particu- 

l a r l y  i n  re la t ion  t o  t h e i r  proper usage, is given by S. Neumark: 
"Concept of Complex St i f fness  Applied t o  Problems of Oscil lations 
with Viscous and Hysteretic Damping," R & M 3269, 1957. 
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damping nodel provides fo r  an energy dissipation which is  propor- 

t i ona l  t o  frequency. 

better sui ted t o  account f o r  in te rna l  damping of the  hysteresis  

type which is  the  predominant type of damping exhibited by aircraft 

structures.  

analysts,  as exemplified by the  work of Theodorsen and Garrick 

The s t ruc tura l  damping model appears t o  be 

This led t o  i t s  ear ly  adoption by fixed-wing f l u t t e r  

( R e f .  3-2). 

For simple harmonic motion of t h e  form e iwt the  s t ruc tura l  

damping model implies t h a t  t he  r a t i o  of spring force t o  displace- 

ment is given by the complex quantity k(l + i g )  where g i s  the  

nondimensional damping coeff ic ient ;  the magnitude of the  damping 

force i s  proportional t o  the e l a s t i c  force but advanced i n  phase 

by 90'. Hence, f o r  simple harmonic motion one can write 

= ig FE 
structural. *D (3-3) 

which implies ( R e f .  3-3) that the corresponding generalized forces 

are related i n  t h e  manner 

Since 

Lagrange ' s equation 

av % = - a q p  
with damping assumes the  form 

(3-5) 

d 



where D i s  t h e  Rayleigh d iss ipa t ion  function accounting f o r  ener- 

gy diss ipat ion by viscous damping. For small vibrat ions T, V, and 

D are  given by homgeneous quadratic expressions i n  the  generalized 

ve loc i t ies  and displacements of t he  form 

N N  N N  

r=l s=l r=l s=l 

N N  

= 'CZ; 2 Xrs (3-7) 
r=l s=l 

N N  

F 1  s=l 

The second t e r m  i n  the first of Eqs.  3-7 is included t o  account f o r  

t he  presence of gyroscopic coupling forces. Inspection of Eqs. 3-6 

and 3-7 indicates  t ha t  t h e  s t r u c t u r a l  damping model i s  introduced 
- 

by simply replacing the  s t i f f n e s s  terms Krs by (1 + ig rs ) t r s ,  

thereby making t h e  s t i f f n e s s  complex. [Mrs], [K,,], and [Crs] 

are symmetric matrices; [frs 3 

- - 
is  non -symmetric. 

Because of the lack  of knowledge as t o  the d i s t r ibu t ion  of 

damping only the  d i r ec t  damping terms are  generally re ta ined i n  

pract ice .  

accounting f o r  damping coupling between degrees of freedom are 

4 

That i s ,  t h e  off-diagonal damping terms (grs, Crs; r # s) 

taken t o  be iden t i ca l ly  zero and only the  d i r ec t  damping i n  a given 

d 
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* 
degree of freedom i s  retained. This simplification w i l l  a l so  be 

employed herein. However, it should be noted t h a t  t h i s  i n  no way 

restricts the  dynamic development presented herein since the  formu- 

l a t i o n  and solution of the  f ina l  equations are not dependent on the 

absence of damping coupling terms. 

The generalized forces i n  Lagrange's equation take on various 

forms depending on whether they are motion-dependent or  motion 

independent. 

complexity of t he  resul tant  terms is  influenced by the par t icu lar  

aerodynamic theory used t o  calculate  the  loading. 

aerodynamics the  resul tant  equations of motion can be wri t ten i n  

the general matrix form 

Aerodynamic forces are of t h e  former type and the 

For quasi-steady 

= [AeroI1 {:> + [Aero], {q> 

where the coeff ic ient  matrices on the le f t  hand side of Eq. 3-8 are  

dependent on the  system parameters and the  aerodynamic matrices are  

additionally dependent on the airspeed V and air  density p. The 

specif icat ion of each of these coeff ic ient  matrices is  the  subject 

of the  next two subsections. 

* 
Suggested procedures f o r  evaluating both t h e  d i rec t  &coup- 

l i n g  damping coeff ic ients  from experimental data are given i n  R e f s .  
3-4 and 3-5. 
damping terms, e i t h e r  viscous o r  s t ruc tura l ,  are contained i n  
R e f .  3-6. 

Several useful formulas f o r  eva lua t ing the  d i rec t  

d 
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(b )  Dynamic Development 

Proprotor: Neglecting inplane motions and assuming independ- 
* 

ent ly  flapped blades an N-bladed ro to r  (N 3) has N modes i n  

which each blade can o s c i l l a t e  as a r i g i d  body with t h e  same fre- 

quency and maximum amplitude aa the others.  This can most eas i ly  

be visual ized by considering a four-bladed ro tor .  

located i n  and moving with t h e  ro t a t ing  coordinate system would 

observe four possible d i s t i n c t  blade flapping modes. 

coordinate system these flapping modes would manifest themselves as 

a co l lec t ive  or symmetric flapping mode i n  which all four blades 

f l ap  forward o r  aft simultaneously, a two-per-rev flapping mode i n  

which two oppositely disposed blades f l a p  forward or aft while t h e  

other p a i r  of oppositely disposed blades f l a p  aft or forward, and 

two one-per-rev cycl ic  flapping modes wherein t h e  path t raced  by 

the  t i p s  of the  blades ( the tip-path-plane) is  t i l t e d  longitudinally 

o r  l a t e r a l l y .  

proprotor hub (neglecting coupling between f l a p  and l a g )  and, as 

indicated i n  R e f .  3-7 f o r  example, cannot couple w i t h  any pylon 

motions which are important i n  whirl. 

mode i s  "reactionless," producing a zero ne t  force on the  hub and 

thus also being a mode which cannot couple with pylon whir l  mo- 

t ions .  

pylon p i t ch  and yaw, respect ively,  and thus cons t i tu te  modes which 

An observer 

In  the  f ixed 

The coning mode produces only a x i a l  forces at  the  

The two-per-rev flapping 

The cyc l ic  p i t ch  and yaw modes, however, can couple w i t h  

* 
For N 3 t h e  ro to r  has ro t a t iona l  symmetry. 



are important i n  whirl  f l u t t e r .  Rotors w i t h  more than four blades 

w i l l  contribute addi t ional  modes of t h e  "reactionless" type which, 

as pointed out above, are not important i n  whirl  f l u t t e r .  Hence, 

based on flapping considerations there are only two blade modes 

which are relevant t o  t h e  whir l  f l u t t e r  problem: a cyc l ic  p i tch  

mode and a cycl ic  yaw mode. These appear i n  the  f ixed system as a 

longi tudinal  or lateral tilt of the  tip-path-plane. 

In  t h e  case of a ful ly-ar t iculated ro to r  t he  inplane freedoms 

of an N-bladed ro t a t iona l ly  symmetric configuration addi t ional ly  

lead t o  N independent inplane blade modes i n  which each blade 

can o s c i l l a t e  as a r i g i d  body w i t h  t he  same frequency and maximum 

amplitude as the  others.  As i n  t he  flapping considerations above 

these inplane modes can be separated i n t o  modes which can couple 

w i t h  pylon p i t ch  and yaw and those which cannot. 
* 

The modes which 

can couple with pylon w h i r l  motions a re  characterized by a blade 

displacement pa t te rn  i n  which the center  of  gravi ty  of t h e  blade 

system i s  o f f se t  f romthe  hub posit ion.  There are two such modes. 

In  one t h e  cg of the displaced blades whirls i n  the  d i rec t ion  of 

ro to r  ro ta t ion  w h i l e  i n  the other  t he  cg wh i r l s  i n  a d i rec t ion  

opposite t o  the d i rec t ion  of ro to r  rotation.' The other  blade in- 

plane modes are either of t h e  "reactionless" type o r  those which 

produce a torque about t h e  ro to r  mast. Again, these lat ter modes 

* 
See, f o r  example, t he  excel lent  physical considerations pre- 

sented by Gevarter ( R e f .  3-8). 

These cha rac t e r i s t i c  d i rec t ions  are with respect t o  a -t 
ro ta t ing  coordinate system. 

d 



cannot couple w i t h  pylon whir l .  

Hingeless proprotors,  characterized by blades which are canti-  

levered from a f ixed hub assenibly, have first out-of-plane bending 

mode frequencies on t h e  order of 1 . 1 t o  1.2 cycles/rev and first in- 

plane bending mode frequencies on t h e  order of .6 t o  .7 cycles/rev. 

For s t a b i l i t y  analyses, t he  e f f ec t s  of blade f l e x i b i l i t y  can often 

be adequately accounted f o r  i n  the guise of the first out-of-plane 

and inplane bending modes by means of a v i r t u a l  hinge dynamic repre- 

sentat ion o r ig ina l ly  suggested by Young (Ref. 3-9) fo r  out-of-plane 

bending of hingeless hel icopter  ro tors .  

plane and f i r s t  inplane bending modes would be approximated simul- 

taneously by the  rigid-body flapping and inplane modes of m ar t icu-  

l a t ed  blade having non-coincident v i r t u  f l a p  and l a g  hinges. In  

terms of t h i s  equivalent system the proprotor would, i n  accordance 

with previous considerations,  have only four blade modes of conse- 

quence i n  w h i r l  f l u t t e r :  two cycl ic  flapping modes, appearing i n  

the  fixed system as a longitudinal and lateral tilt of the tip-path- 

plane, and two inplane modes, appearing i n  the  ro ta t ing  system as a 

forward and backward whir l  of t h e  center of  gravi ty  of t h e  displaced 

blades. 

Here both the first out-of- 

A gimbaled proprotor is  characterized by blades which are 

cantilevered from a r i g i d  hub assembly which is  attached t o  the  

dr ive shaft by means of a ginibal housed within t h e  hub. If the  

blades are  taken t o  be r i g i d  the proprotor freedoms are constrained 

t o  be those representing a longi tudinal  and lateral tilt of t h e  

d 
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tip-path-plane r e l a t ive  t o  the  shaf t .  

path-plane modes then gives any ac tua l  rigid-body flapping motion 

which the  blades can perform. 

plane flapping mudes manifest themselves as a wobbling or weaving 

of the  tip-path-plane as a r i g i d  disc  i n  t h e  forward or backward 

direction. It is  t o  be noted t h a t  these two "rigid-disc modes" 

a re  geometrically equivalent t o  the one-per-rev cyc l ic  flapping 

modes described e a r l i e r  f o r  t he  a r t icu la ted  and hingeless proprotors 

A s  a consequence of i t s  gimbal mounting arrangement, t he  first out- 

of-plane blade mode of a gimbaled proprotor i s  the  rigid-body flap- 

ping mode. Hence, i f  blade f l e x i b i l i t y  must be included i n  the  

analysis it can be e s sen t i a l ly  completely accounted for so le ly  in  

the guise of blade first inplane bending v i a  a v i r t u a l  hinge dynamic 

representation i n  the  manner given by Young (Ref. 3-9). Another 

procedure i s  described by Gaffey i n  R e f .  3-10. 

Superposition of these t ip-  

In  t h e  f ixed system these tip-path- 

re 

The gimbaled proprotor on the  Model 266 is  of the " s t i f f -  

inplane" type so t h a t  dynamic phenomena associated with it, i n  par- 

t i c u l a r  proprotor/pylon i n s t a b i l i t y ,  a re  characterized by the  

blades act ing as  r i g i d  i n  flapping and coupling with the  pylon/wing 

e l a s t i c  modes, with negligible blade inplane bending. 

ro tor  charac te r i s t ics  a re  very s i m i l a r  t o  those of the  idea l  r igid-  

blade gimbaled proprotor described above. 

developed i n  t h i s  d i sser ta t ion  it is  assumed t h a t  the  blades can be 

These psop- 

I n  the  dynamic analyses 

* 
This i s  shown i n  Chapter 4. 

d 
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taken t o  be r ig id  and t h a t  any rigid-body flapping behavior of the 

blades can be described as a l inea r  combination of the  longitudinal 

and l a t e r a l  flapping modes of t he  tip-path-plane taken as a r i g i d  

disc.  It is the  use of t h i s  tip-path-plane representation f o r  the  

description of t he  blade flapping modes t h a t  permits t he  removal of 

the  time dependency from the  coeff ic ients  i n  the  equations of 

motion. t 

The two-degree-of-freedom proprotor (having the  tip-path-plane 

freedom described above) is  taken t o  be mounted on a r i g i d  pylon 

having three l i nea r  and three rotational. degrees of freedom. These 

freedoms and the  associated sign convention are indicated i n  Fig. 

3-1. Because the  wing tors iona l  s t i f f n e s s  i s  generally s ignif icant-  

l y  d i f fe ren t  from the  wing fore  and aft (chordwise) bending s t i f f -  

ness the  pylon support s t i f f n e s s  i n  p i tch  can be qui te  d i f fe ren t  

from tha t  i n  yaw. In  t h i s  instance the  distance from t h e  ro tor  

plane t o  the  e f fec t ive  p i tch  pivot i s  generally d i f fe ren t  from the  

corresponding distance t o  the  e f fec t ive  yaw pivot.  The present 

analysis accounts f o r  t h i s  possible difference i n  the  manner shown 

i n  Fig. 3-2. The dynamic contribution of t h e  proprotor t o  the 

* 
The control system is  a l so  taken as r ig id .  Blade feathering 

then en ters  only as a kinematic freedom and does not contribute t o  
the  system degrees of freedom. 

the  more general case i n  which blade inplane f l e x i b i l i t y  i s  
included th i s  t i m e  dependency can a l so  be removed i f  the blade in- 
plane motions a re  described i n  terms of the'fnodes" of t he  center of 
mass of the displaced blades. See, f o r  example, R. L. Johnson and 
K. H.Hohenemser : "On the Dynamics of Li f t ing  Rotors with Thrust or 
Ti l t i ng  Moment Feedback Controls," J. h e r .  H e l .  Soc., Vol. 15,  No. 
1, January 1970. 
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equations of motion, as embodied i n  i t s  contribution t o  T, V ,  and 

D f o r  use i n  Lagrange's equation, i s  derived below. 

(1) Kinetic Energy - Specif icat ion of t h e  ro to r  k ine t i c  energy 

requires  t h e  p r i o r  determination of the absolute veloci ty  of a mass 

element on the  nth blade. 

involves the  general  problem of motion i n  a moving coordinate sys- 

t e m .  Vector methods, such as described i n  Ref. 3-11, w i l l  be used 

t o  express t h i s  ve loc i ty  i n  terms of the  spec i f ied  system degrees 

of freedom. 

nate systems are  i l l u s t r a t e d  i n  Fig. 3-3. 

f ixed i n  i n e r t i a l  space. The axis systems xyz and a re  both 

moving coordinate systems. The xyz system moves i n  both t ransla-  

t i o n  and ro ta t ion  such t h a t  i t s  coordinate axes remain p a r a l l e l  t o  

the  corresponding axes of t he  i n e r t i a l  coordinates. 

ro t a t e s  about the ax is  and moves such t h a t  remains p a r a l l e l  

t o  x (and hence Xo); t he  a x i s  is  taken t o  be or iented i n  the 

spanwise d i rec t ion  of the nth blade (but not i n  the  plane of t he  

blade) ,  i t s  angular pos i t ion  with respect t o  the  y ax i s  being given 

by 111. 
t o  be clockwise when viewed from t h e  rear. 

t o r  of the moving or ig in  s i t ua t ed  at t h e  proprotor hub pos i t ion  

referred t o  the i n e r t i a l  coordinate system and E 
vector of an element of mass on the nth blade referred t o  the  

coordinate system. 

Because t h e  blades are ro t a t ing  t h i s  

The per t inent  vector quant i t ies  and associated coordi- 

Xo, Yo, Zo are axes 

The ei system 

The d i rec t ion  of ro to r  ro t a t ion  i n  forward flight is  taken 

is  the  posi t ion vec- 

i s  t h e  posi t ion 

The posi t ion vector t o  an a rb i t r a ry  point on the 

spanwise ax is  of t h e  nth blade with respect t o  i n e r t i a l  axes is 
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given by 

: = E + ;  (3-9) 

Different ia t ing the  vector quant i ty  with respect t o  time y ie lds  

- 
where v is  the  veloci ty  of t h e  mass element as seen by an observer 

i n  the  Gz coordinate system and 

xyz coordinate system referred t o  t h e  e< coordinate system. 

is  t h e  angular ve loc i ty  of the  
--- 

Now 

R = do + YJ0 + Zzo ( 3-11) 

- -  E are  un i t  vectors i n  the  f ixed system. With ref- 
0’ Joy 0 

where i 

erence t o  Figs. 3-1, 3-3, and 3-4 

system degrees of  freedom as 

can be wr i t ten  i n  terms of the 

small motions being assumed throughout. For s m a l l  angles we can 

a l s o  write  

where, f o r  an N-bladed ro to r ,  

and 

speed 52 is taken t o  be constant. 

i s  a un i t  vector along the  2 axis.  The ro to r  ro t a t iona l  

t h  The flapping angle 6 between the  spanwise axis of the  n 

blade and a plane normal t o  t h e  r o t o r  mast w i l l  vary per iodical ly  

d 
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w i t h  t h e  aximuth angle $. 

nth blade r e l a t i v e  t o  the 

tip-path-plane freedoms a and bl and ro to r  precone 8, i n  t h e  

form 

The flapwise angular posi t ion of t h e  

ax is  can be wr i t ten  i n  terms of the 

1 

8' Z 8 + 8, = &i s i n  J, - bl cos J, + Bo ( 3-15 

The contribution of the pylon p i t ch  and yaw angular displacement t o  

the  tip-path-plane angular displacement i s  

The angular posi t ion of t he  nth blade i n  space is then given by 

Now 5 can be expressed as 

- - 
p = r cos n' j + r s i n  q' i ( 3-18) 

from which 

- - 
v = -  r 6 1  s i n  r ) ~  j + r ;It cos TI' i ( 3-19 

Subst i tut ing Eqs. 3-12, 3-13, 3-18, and 3-19 i n t o  Eq. 3-10 y ie lds  

From the  geometry of Fig. 3-4 t he  un i t  vectors i n  t h e  Ei and 

X Y Z coordinate systems are related as 
0 0 0  

d 
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Using Eqs.  3-21 in Eq. 3-20 there results 

The kinetic energy of the n'h blade is given by 

Substituting Eq. 3-22 into Eq. 3-23 gives 

+ i2 + 2ih24, - Sr:' sin q t  cos J, 

- Z$r$ cos TI' sin J, + h2$Z 2-2 - 2h24zrtt sin q t  cos J, 

- 2h2izr4 cos q' sin J, + r2{*2 sin2 q' cos 2 J, 

+ 2@ * 20 q' sin q' cos q t  sin J, cos J, + r 2.2 J, cos 2 q *  sin 2 J, 

+ k2 - 2kh 6 - 2&6' sin q' sin J, 
1 Y  

. .  2' 2 .. 
+ 2z$r cos q' cos 9 + h $ + 2h 9 rq' sin TI* sin J, 

l Y  l Y  
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2 - 2h 6 $r cos q' cos Q + r2it2 sin2 ?I' s i n  $ l Y  

Expanding s i n  TI' and cos q' and making the  customary small 

angle assumption for the  perturbation quant i t ies  the trigonometric 

terms involvhg 11' i n  Eq. 3-24 can be approximated as 

s i n  n' =: (6 + yl) cos 8, + [I- + (6 + yf)2]  s i n  8, 

Substi tuting the  approximations of Eq. 3-25 i n t o  Eq. 3-24 the  blade 

k ine t ic  energy can be writ ten as 
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Noting t h a t  

angle approximation is  also va l id  f o r  t h e  trigonometric terms in- 

volving 8 . Making these addi t ional  approximations i n  Eq. 3-26, 

Bo is  i n  prac t ice  s m a l l  (a f e w  degrees) the sma l l  

0 

expanding, and re ta in ing  terms up t o  second order i n  t h e  dependent 

coordinates and first order i n  Bo leads t o  
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Subs t i tu t ing  the expressions f o r  8 and y' from Eqs.  3-15 and 

3-16 i n t o  Eq. 3-27 

+ r2{02 cos2$ + 2 0  0 s i n  JI cos $ + 0' 
+ i2 + 2; h2 iz - & cos $ Bo{@ cos $ + @ s i n  $} 

2 2  - 6rdJ s i n  $(l - BOA s i n  $ + BOB cos $} + h2 0 ,  

- 2h2bzr Bo cos $ cos $ + @ sln $1 ( 3-28) 

- 2h2i2r 4 s i n  $ 1 - 8, A s i n  $ + BOB cos 
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2 2  2 2  + r2+2{l - A s i n  Q +  AB s i n  J, cos Q - B cos J, 

- 2$0A s i n  J, + 2BoB cos J,} 

- 2kh 4 - 2kB0 s i n  J, cos J, + @ s i n  Q 
l Y  

+ 2k-4 cos J,{1 - BOA s i n  J, + BOB cos J, 

+ 2h ;b rB s i n  J, cos Ji + @ s i n  9 
l Y  0 

where t h e  following de f in i t i ons  have been made: 

A = a1 + Q,y B = bl + Q,z 

The rotor contribution t o  the  k ine t i c  energy is  obtained from Eq. 

3-28 by summing over the number of blades using the  re la t ionships  

N N C cos2@ =E s i n  2 N  J, = 

n=l  n= l  

N N 
s i n  J, cos J, = C s i n  J, =>: cos Q = o 

n=l  n=l  n= l  

This results i n  



100 

Introducing the def in i t ions  



10 1 

t he  k ine t ic  energy 
r 

of t h e  proprotor assumes t h e  f i n a l  form 

(2)  Poten t ia l  Energy - The proprotor contribution 60 t h e  sys- 

t e m  po ten t ia l  energy arises f romthe  def lect ion of the  hub flapping 

springs. For t h e  nth blade t h i s  energy, i n  t h e  ro t a t ing  coordinate 

system, can be wr i t ten  as 

d 
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1 2 VB = KB B (3-34) 

where K is  t h e  blade flapping r e s t r a i n t  and B i s  defined i n  

terms of tip-path-plane coordinates as 
B 

6 = a1 s i n  I) - bl cos $ ( 3-35 1 

For K 

Eq. 3-35 i n t o  Eq. 3-34 and a summation over N blades results i n  

a constant ( t h a t  i s ,  independent of J I )  the  subst i tut ion of 8 

from which the  following def ini t ion is made 

Eq. 3-37 establ ishes  the  I 1  equivalence" between the  blade flapping 

r e s t r a i n t  K and the  symmetric hub flapping r e s t r a i n t  %. I n  

the  general case of a non-symmetric hub r e s t r a i n t  Eq. 3-36 i s  

replaced by 

8 

(3) Damping - A viscous damping model i s  employed t o  account 

f o r  energy diss ipat ion at the  hub gimbal. 

function for  the  case o f  nonsymmetric hub damping i s  given by 

TheRayleigh diss ipat ion 

where the  damping coeff ic ients  are given by ( 3-39) 

d 
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Eqs.  3-40 are based on the definit ion of the c r i t i c a l  viscous damp- 

ing coefficient for  motion i n  one degree of freedom. 

Pylon/Wing: Motion of t h e  proprotor/pylon/wing system i s  in- 

fluenced mainly by the proprotor/pylon combination because of i t s  

large concentrated mass i n  comparison t o  the  smaller distributed 

mass of the wing. 

e l a s t i c  degrees of freedom t o  the proprotor/pylon motion can be 

f a i r l y  w e l l  accounted fo r  by considering only wing t i p  deflections 

i n  the wing modes of importance. Since the proprotor couples with 

one of the fundamental wing modes (wing ve r t i ca l  bending, wing fore 

and aft  bending or  wing torsion) it i s  necessary t o  consider only 

the  wing t i p  deflections i n  these fundamental modes of motion. 

This permits the use of equivalent concentrated wing t i p  spring 

rates t o  represent the deflection character is t ics  of the wing t i p  

i n  the  fundamental. wing modes. 

set l a t e ra l ly  from the wing t i p  these wing t i p  spring rates are 

referenced t o  the  appropriate pylon pi tch or yaw effective pivot 

as depicted i n  Fig. 3-5. An energy dissipation device, e i ther  

s t ructural  or viscous, is associated with each of the support 

This suggests that the contribution of the wing 

Since the pylon centerline i s  off- 

0 

* 
Stiffness  coupling is  neglected. 

d 
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springs shown. The wing distributed mass and i n e r t i a  are replaced 

by generalized masses and iner t ias  based on the fundamental mode 

shapes and referenced totheappropriate  location on the pylon 

centerline. "he distributed mass of the pylon (less rotor)  is re- 

placed by an equivalent r i g id  body mass-inertia matrix referenced 

t o  axes fixed at the pylon center of mass. To allow f o r  non- 

coincident effective pi tch and yaw pivot locations, 

Fig. 3-2). Swmnarizing,the basic pylon/wing assumptions are: 

El # 6, (see 

1. Rigid pylon having three t ranslat ional  and three rotat ional  
degrees of freedom 

2. Pylon constrained i n  t ranslat ion and rotation by l inear  
springs and dampers 

3. Wing distributed mass, s t i f fness ,  and damping replaced by 
equivalent concentrated masses, springs, and dampers refer- 
enced t o  the centerline of the  pylon 

(1) Kinetic Energy - Assuming that the body axes fixed at the 

pylon center  of mass are principal axes the kinet ic  energy of the 

pylon with respect t o  those axes can be immediately w r i t t e n  i n  t h e  

matrix form 

0 

KP 
0 

0 

0 

0 

0 

0 

MP 
0 

0 

0 

0 

0 

0 

IP xx 

0 

0 

0 

0 

0 

0 

YY 
IP 

0 

0 

0 

0 

0 

0 

2 
IP 

i i l c  ( 3-41 

1 



This energy must be expressed in terms of the pylon degrees of 

freedom which are defined at the effective pylon pitch and yaw 

pivots. The necessary transformation is effected in the manner 

outlined in Appendix A, the required transformation matrix [O] 

being obtained from Eq. A-13 by making the following substitutions: 

R = 0 for r # 6 ,  a = El or 6, depending on whether pitch or rs 
yaw, b = 0 ,  c = - c, a = +x, 6, - - +f Yo = @z, Xo - - x, Yo = Y¶ and - 

0 

z = z. The final. result is 
0 
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(2)  Potent ia l  Energy - Based on the  equivalent l i nea r  springs 

shown i n  Fig. 3-5 the potent ia l  energy contrAbuted by the  pylon can 

be writ ten as 

= - K x  ' + -  2 + - K z  1 2 1  + - K  Cp 2 
vP 2 x 2Kyy 2 z 2 $x x 

(3-43) 
+ - K  1 $ 2 1  + - K  Cp 2 
2 4 y Y  2 O z Z  

( 3 )  Damping - The Rayleigh dissipation function t o  account for  

viscous damping is  given by 

( 3-44) 
+ - c  1 $ '2 + - c  1 $ '2 
2 CpyY 2 Cpzz 

Substi tuting Eqs.  3-33, 3-38, 3-39, 3-42, 3-43, and 3-44 i n to  the  

l e f t  hand side of Lagrange's equation (Eq. 3-6) and performing the  

indicated different ia t ions establishes the dynamic matrices i n  Eq. 

3-8. These are given i n  Eqs. 3-45 through 3-48 below. 

d 
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[ E ]  = 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 -21R 

0 0 0 0 

0 0 0 0 

0 0 0 -21g 

C 
Y 

cz 

C 
5 

N u l l  

0 0 

0 0 

0 0 

21R O 

0 0 

0 0 

=R 

0 0 

Null 

c% 

C 

0 

0 

0 

0 

-25 

0 

0 

-21R 

0 

0 

0 

21R 

0 

0 

21R 

0 
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( c ) Aerodynamic Development 

General Considerations: Historically,  propeller/nacelle w h i r l  

f l u t t e r  analyses have not required inclusion of unsteady aero- 

dynamic effects  ar is ing fromthe wake, mainly because the vor t ic i ty  

shed by the  blades is carried away f romthe propeller plane at  a 

much faster rate than the corresponding wake associated with a 

helicopter i n  forward flight. 

proprotor i n  axial flight so t h a t  f o r  f l i gh t  operations at high 

dvance ra t ios ,  such a5 i n  the airplane cruise mode of f l i g h t ,  w a k e  

e f fec ts  can be taken t o  be of se.condary importance. 

a first-order l inear  approximation t o  the non-steady aerodynamic 

The stme appears t o  be true for a 

Consequently 

d 
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forces and moments acting on a proprotor performing t ransient  

motions can be established via  a quasi-steady aerodynamic theory. 

Characteristic features of a Quasi-steady approximation are the  

neglect of the  effects  of t he  osci l la tory wake (i.e., aerodynamic 

phase lags),  the  airloads being taken t o  adjust themselves instan- 

taneously t o  the motions producing them, and the neglect of the  

(generally) s m a l l  aerodynamic acceleration terms (i. e. 

circulatory lift terms). 

r) 

the non- 

I n  addition to the  expl ic i t  assumptions associated with the use 

of a quasi-steady aerodynamic theory several simplifying assump- 

t ions are associated with the aerodynamic development herein. The 

majority of these are "classical" i n  nature, being of the  type 

which are customarily made when employing a quasi-steady aerodynamic 

theory i n  a l inear  formulation for  propeller and proprotor whirl 

f l u t t e r  s t a b i l i t y  analyses. Thrust and blade prof i le  drag are 

i n i t i a l l y  included i n  the  formulation t o  indicate the manner i n  

which they might be incorporated i n  the analysis, but they are 

eventually dropped. 

t ions are: 

The principal additional aerodynamic assump- 

1. Axial flow through proprotor 

2 .  Aerodynamic loading is applied stripwise along the blade 

n 
Mathematically, quasi-steady aerodynamic theory is  obtained 

from a general unsteady theory by se t t ing  the reduced frequency, 
which is a measure of the wake unsteadiness, t o  zero. 



111 

3. 

4. 

5 .  

6. 

7. 

8. 

9. 

10 * 

11. 

L i f t  coefficient i s  l inear  w i t h  angle of attack; prof i le  
drag coefficient i s  a quadratic function of angle of 
attack 

Perturbation velocity components acting on the blade sec- 
t ions only contribute t o  changes i n  the inflow angle and 
have negligible e f fec t  on the  resultant section velocity 

Induced velocity due t o  thrus t  is negligible 

The aerodynamic forces acting on the pylon and spinner 
are zero 

N o  wing aerodynamics 

No rotor/wing aerodynamic interference 

The precone angle is  s m a l l  

Negligible blade section pitching moment 

Blade chord is  constant along span 

The first assumption r e s t r i c t s  consideration t o  the  airplane mode 

of f l i gh t  w i t h  the proprotor fu l ly  converted forward. 

means tha t  the  blade is  treated as a rotat ing a i r f o i l  with each 

blade element following a helical. path and treated as  a segment of 

an i n f in i t e  aspect r a t i o  (i.e.,  two-dimensional) wing with no span- 

w i s e  a e r o d y n d c  interference between elements. 

f i n i t e  span are introduced separately. 

precluded by assumption 3. 

determining the  s t a b i l i t y  of small osci l la t ions about a steady- 

state trim flight condition. 

loading under thrusting conditions i s  "small." 

m e t  i n  the airplane cruise mode of flight where the proprotor 

thrust  (or  lift) coefficient is on the order of 1/lOth t h a t  i n  

Assumption 2 

Corrections fo r  

Blade stall  effects  are 

Assumption 4 r e s t r i c t s  appl icabi l i ty  t o  

Assumption 5 implies that  the disc  

This requirement i s  

d 
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hover. 

r a t i o  blades minimizes the induced drag, which can then be neglected 

re la t ive  t o  the blade prof i le  drag. 

aerodynamic loading is  a consequence o f t h e  s i  

model selected t o  represent the pylon/wing system. 

assumption may appear t o  be a severely l imiting one, limited 

results ( t o  be shown i n  Chapter 5) indicate tha t  the neglect of 

wing aerodynamics i n  proprotor/pylon whirl s t a b i l i t y  analyses is 

conservative. On t h e  basis of assumption 9 precone can be taken t o  

have no e f fec t  on the  inflow geometry and perturbation flow veloci- 

ties. 

rotor  blade a i r f o i l  sections tha t  minimize the  sectional pitching 

moments. 

bution of the section pitching velocity t o  the loca l  inflow veloci- 

t y  i s  considerably smaller than the contribution fromthe blade 

flapping velocity. 

t o  t h e  generalized aerodynamic forces important i n  whirl f l u t t e r  is  

thus generally small and can be neglected. 

s tan t  chord blades is  not r ea l ly  r e s t r i c t ive  since proprotor blades 

are character is t ical ly  very nearly of constant chord, at least over 

the  major portion of t h e i r  span. 

This low l i f t  coefficient i n  combination with high aspect 

The assumption of no wing 

l i f i e d  mathematical 

Although t h i s  

Control system loading considerations d ic ta te  the  use of 

A$so, fo r  blades which are stiff i n  torsion, the contri- 

The blade section pitching moment contribution 

The assumption of con- 

Although the  aforementioned aerodynamic assumptions and those 

employed earlier i n  the  dynamic development are quite extensive the  

reduction of the  s t a b i l i t y  formulation i n  t h i s  way t o  i t s  rudiments 

w i l l  , hopefully, permit a be t te r  insight in to  proprotor-related 
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dynamic phenomena, which should more than compensate for  any lack 

of mathematical elegance. 

“he matrices constituting the dynamic portion of Eq. 3-8 have 

been established above. There now remains the task  of determining 

the aerodynamic matrices indicated i n  Eq. 3-8. Considerations 

relat ing t o  the definit ion of these quantit ies are presented below. 

Perturbation Forces Actina on an Elemental Blade Section: The 

pertinent ae rodyndc  forces and aseociated inflow geometry appli- 

cable t o  a typical  blade section of a proprotor i n  axial  f l i gh t  are 

shown i n  Fig. 3-6. Steady-state values of lift and drag, blade 

geometric pi tch angle, inflow angle, and angle of attack are de- 

noted by L,  D ,  0 ,  $, and a respectively. Corresponding changes 

i n  these quantit ies as a consequence of perturbations fromthe 
0 

steady-state condition are given by AL, AD, 80, A 4 ,  and Act. 

Resolving the blade element lift and drag vectors in to  components 

para l le l  and normal t o  the freestream direction 
CI 

(F + AF)B = ( L  + AL) cos($ + A$) - (D + AD) s in(@ + A$) 

(F + AF) ,  = ( L  + AL) s in($  + A@) + (I) + AD) cos($ + A$) 
( 3-49 1 

where the subscripts 6 and G denote components i n  the ax ia l  and 

normal directions,  respectively. 

t o  first order i n  the perturbation quantit ies Eqs. 3-49 reduce t o  

Expanding and retaining terms up 

+t 
The aerodynamics herein are developed with respect t o  a wind- 

axis system. 



(F + AF)B = L cos 4 - LA4 s i n  Cp + AL cos 41 

- D s i n  4 - DA4 cos 4 - AD s i n  3 

(F + AF)c = L s in  4 + LA$ cos 4 + AL s i n  4 
( 3-50] 

+ D cos 0 - DAO s i n  $ - AD VocI $ 

where recourse has been made t o  the small angle approximation fo r  

A@, Equating terms of l i k e  order i n  Eqs. 3-50 yields 

FB = L cos Q, - D s in  Cp 

= L s i n  4 + D cos 9 FS 

as the  zero order terms, i.e., those independent of the perturba- 

t ion  quantit ies and thus describing the steady-state forces, and 

AFB = AL cos Q, - LA4 s i n  C - AD s i n  Cp - DA4 COB 4 (3-52s) 

= AL s i n  @ + LA$ cos 6 - AD cos 4 - DA$ s i n  4 (3-5%) 5 
as the contribution of the first order perturbation terms t o  the 

blade section force components. Eqs. 3-51, describing the steady- 

state trim condition, are not of concern here. Eqs. 3-52 are the 

desired expressions for  the perturbation forces acting on the blade 

element. Examination of these equations indicates that the  steady- 

state quantit ies L ,  D, and $ and the  perturbation quantit ies 

AL, AD, and A 4  

0 

require definition. 

it 
The significance of the  underlined terms w i l l  be pointed out 

later . 
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The quasi-steady steady-state l i f t  and drag acting on a blade 

element of width d r  and chord c are given by 

L = ’ i . p c L  1 c v 2 d r  0 
0 

D = z p C D  1 c v 2 d r  0 
0 

where C and CD are the elemental lift and drag coefficients,  

Uo i s  the  resultant steady velocity seen by the blade element (Fig. 

3-61, and p is the freestream density. To account for  perturba- 

t i on  motions Eqs. 3-53 can be generalized t o  

LO 0 

L + AL = $ pc(CLo + ACL)(Uo + AU)2 dr (3-54a) 

so tha t  the perturbation l i f t  and drag, t o  first order i n  the per- 

turbation quantit ies,  are given by 

ACL + 2U C AU) dr 
O Lo 

O Do 
AD = $ pc(f ACD + 2U C 

Assuming a l i n e a r  variation of blade section lift coefficient with 

angle of attack 

and a quadratic variation of 

CL = aoa (3-56) 

blade section prof i le  drag w i t h  angle 
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of attack (Ref. 3-12) 

( 3-57 1 2 CD = d + dla + d2a 
0 

the steady-state and perturbation lift and drag coefficients appear- 

ing i n  Eqs.  3-55 can be written as 

- 
cL - &oa0 
0 

and 

ACD = dl Aa + 2d2a0 ha (3-59b) 

where a. i s  the two-dimensional blade section lift curve slope 

and do, 5, and d2 are constants chosen t o  f i t  the series 3-58b 

as closely as possible t o  the experimental curve of drag coeffi- 

fi 

cient versus angle of attack over the appropriate angle of attack 

range. The steady-state angle of attack a. is  a function of 

blade radius and must be evaluated fo r  each f l ight  condition t o  be 

analyzed. Using the results of Eqs.  3-58 and 3-59 i n  Eqs.  3-55, 

t he  expressions fo r  the perturbation lift and drag assume the form 

* 
"he coefficients are constants only below the c r i t i c a l  Mach 

number and for  angles of attack below stall. 
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a = 5 1 p aoc[f ~a + 2u0aO 

AD = $ pc[f(%Aa + 2d2a0 Aa) 

dr ( 3-60a) 

( 3-6Ob 
+ 2U (d + d1a0 + d2a3 AU] dr 

0 0  

Substituting Eqs. 3-53, 3-58, and 3-60 in to  Eqs. 3-52, the elemen- 

t a l  perturbation aerodynamic forces acting para l le l  and normal t o  

the freestream direction are given by 

A F ~  = pc (aoUo Aa + 2U0a0a0 AU) cos $ 

- aoaoUo 2 A(9 s i n  (9 - {Uo(dl 2 Aa + 2d2a0 jSa) 

+ 2 U  (a + dlao + d2az) AU) s i n  (9 
0 0  

and 
- 1 AFc - h 

+ 

+ 

a a t? A$ cos (9 - (<(dl 

2U (d + alao + d2ag) AU} cos (9 

+ 2d2a0 
0 0 0  

( 3-6111) 

0 0  

Neglecting all prof i le  drag terms, Eqs. 3-61 reduce t o  

p aoc (uE ~a + 2u0a0 AU) cos (9 AFB = [ 
A+ sin 43 dr - a. 0 

d 
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+ Oc0 3 0 A@ cos $1 dr 
Eqs. 3-62 represent the elemental perturbation lift force compon- 

ents acting on a thrusting proprotor with zero prof i le  drag. The 

subsequent development neglects drag and proceeds from Eqs . 3-62. 

From the inflow geometry of Fig. 3-6 the  quantit ies required 

i n  Eqs. 3-62 follow a8 

= + ? = 
uO 

( 3-63 

AU Ue - Uo = AUT cos(@ + A@) + AUN s in($ + A$) (3-64) 

or ,  t o  first order i n  the perturbation quantit ies,  

AU = AUT cos @ + AUN s i n  @ ( 3-65 

and 

Aa = A8 - A4 ( 3-66 ) 

The perturbation blade pi tch and inflow angle changes and the per- 

turbation veloci t ies  appearing i n  Eqs. 3-65 and 3-66 must now be 

evaluated i n  terms of the  perturbation motions. 

Perturbation Change i n  Blade Element Geometric Pitch: A gen- 

eral  expression fo r  the geometric pi tch change A8 experienced by 

an element of a r ig id  blade is  given by 

= "collective + Aecyclic ( 3-67) 

The first term on the r igh t  hand side of Eq. 3-67 represents a l l  
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pitch changes of a collective type wherein the angle of attack of all 

similarly situated blade elements is changed simultaneously in the 

same direction and by the same amount. 

associated with pitch-cone coupling and collective control inputs for 

example. The second term represents pitch changes of a cyclic nature 

such as those resulting from the use of pitch-flap coupling or cyclic 

control inputs. Incorporation of blade pitch control feedback systems 

for augmenting proprotor/pylon stability or providing gust alleviation 

would also contribute to collective and cyclic changes in blade pitch. 

Although collective pitch changes are not considered herein inflow 

velocity changes which are uniform over the rotor disc (such as that 

arising from an axial perturbation in velocity for example) are of a 

collective nature. Terms of this latter type arise naturally during 

the blade aerodynamic force summation process and will thus be de- 

ferred till later. 

coupling and to one type of control feedback will be considered below. 

Changes of this tJrpe are 

Cyclic blade pitch changes due to pitch-flap 

(1) Pitch-Flap Coupling - The kinematic action known as pitch- 
flap coupling acts to couple the blade flapping motions with re- 

spect to the mast and the blade geometric pitch and has the effect 

of reducing both steady-state flapping and flapping in maneuvers. 

This arrangement is realized physically by establishing a virtual 

flapping hinge by having the end of the blade pitch horn offset 

from the physical flapping axis of the blade so that when the blade 

flaps up the blade pitch increases or decreases depending on the 

sign of the pitch-flap coupling ratio. 

the end of the pitch horn and the point of intersection of the 

Let a line be drawn between 

d 



feathering axis with the physical flapping a x b  of the blade. The 

acute angle made by this l i n e  with the physical flapping axis i s  

taken t o  be the pitch-flap coupling angle . 
63 

The pitch-flap coupling is  defined t o  be posit ive and associated 

with a negative 6 

blade f laps  up ( the s i tuat ion depicted i n  the sketch) and negative 

and associated with a posit ive 6 3 
when the blade flaps up. 

the shaft normal plane due t o  pitch-flap coupling is given by 

angle if the blade pi tch increases when the  3 

angle i f '  the  blade pi tch decreases 

The perturbation pi tch change relative t o  

A0 = - f3 tan ti3 = - (al s i n  JI - bl cos 9 )  tan ti3 (3-68) 

Now i n  the  wind axis system the  shaf t  normal plane has been pitched 

($y) and yawed ($z) so t h a t ,  re la t ive  t o  wind axes, the perturba- 

t i on  pitch change i s  

d 
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+ (bl t a n  6 + 4 COS $ 
3 Y  

(2  f Swashplate/Pylon Coupling - A displacement feedback arrange- 

ment which mechanically couples the  angular displacement of the  pylon 

and the  angular def lect ion of the  swashplate r e l a t i v e  t o  the  pylon 

has been termed swashplate/pylon coupling (Ref. 3-13). 

ly choosing the coupling r a t i o s ,  the angular motion of the  ro tor  con- 

t r o l  ax is  (swashplate) i n  space can be divorced from the angular 

motions of the  pylon thereby ef fec t ing  a s igni f icant  reduction i n  the  

magnitude of the destabi l iz ing shear forces generated by ro tor  pre- 

cession. With respect t o  the  wind axis system the  blade perturba- 

t i on  p i tch  change i n  the  presence of t h i s  type of blade p i tch  con- 

t r o l  feedback i s  given by 

By approprlate- 

A8 = -K (9 cos 9 - K2(9z s i n  9 ( 3-70) 

where K1 and K2 are the longitudinal and l a t e r a l  feedback gains. 

If K1 and K2 a r e  posi t ive a swashplate motion which is  out of 

phase with the pylon angular motion r e s u l t s ,  the  amount being a 

function of the gains. For the  par t icu lar  case i n  which K1 and K2 

l Y  

are both equal 

phase w i t h  the  

t o  +1.0, t he  swashplate w i l l  be exactly 180' out-of- 

pylon, i .e.,  

= + l.O-al = - @y K1 

= + 1.0--cbl = - (9z K2 

( 3-71 

The s i tua t ion  i n  the  p i tch  plane i s  i l l u s t r a t e d  i n  the sketch 

below. 
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- Proprotor disc 

K1 = 0 

( 3 )  Control Phasing - The signal which the swashplate trans- 

m i t s  t o  the blades through the pi tch links i s  generally 

phased re la t ive  t o  the blade azimuthal position such that  control 

inputs t o  the blades appear on the rotor at an azimuth position 

more advanced ( i f  w C Q) o r  retarded ( i f  w > 0) than the swash- 

plate tilt which is  the source of the  control deflections. This 

control phasing is introduced analytically by replacing $ with 

Jt - E i n  Eq. 3-70, which gives 

B B 

The phasing angle E is  defined i n  the sketch below. 



Combining the above individual contributions and denoting the coll- 

ective changes by hec the total perturbation pitch change assumes 

the  form 

A0 = Aec + cos $I[-K $ 
l Y  

Y 1 + bl tan 63 + $ 

- K $ cos E - a1 2 2  

COS E + K2$z sin E 

+ sin $ b ~ ~ $ ~  sin E 

1 ( 3-73) 
21 

tan 63 + $ 

Perturbation Change in Blade Element Inflow Angle: With ref- 

erence to Fig. 3-6 the quantity Ue A$ is approximately given by 

Ue A$ = AUN COS($ + A 4 )  - AUT tan 4 C O S ( $  + A$) (3-74) 

Now, from Eq. 3-64, 

= Uo + AU = Uo + AUT cos($ + A$) + AUN sin($ + A$) (3-75) 'e 
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Substituting Eq. 3-75 in to  Eq. 3-74, expanding, and retaining terms 

up t o  first order i n  the perturbation quantit ies gives 

Uo A 4  = AUR cos 4 - AUT s i n  #J 

Since 

the perturbation inflow angle follows from Eg. 3-76 as 

A 4  = a [ A U N  nr - AUT tan 4 1 ( 3-78) 

Blade Element Perturbation Velocities: The perturbation velo- 

c i t y  component para l le l  t o  the freestream direction can be writ ten 

as 

AUN = rrl' . + X . 
Using Eq. 3-17 the above eqwtion becomes 

( 3-79 1 

From Fig. 3-7 the perturbation velocity normal t o  the  blade span i s  

A U ~  = i cos Q - i s i n  Q + m& (3-81) 

Now from Fig. 3-4 we have 

i = k - hlJY 

( 3-82) 
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so that Eq. 3-81 becomes 

AUT = (k  - h ) cos J1 - (i + h24,) s i n  J, + rJX (3-83) 1 Y  

For a wing encastre' at i t s  root the contribution of 6 (here, the 
X 

time rate of change of wing t i p  bending slope) t o  

small re la t ive  t o t h e o t h e r  terms and is  thus neglected. 

AUT w i l l  be 

Proprotor Forces and Moments: 

(1) Blade Perturbation Forces and Moments - The drag component 

of the lift force acting on the dh blade is given by 

r2 

% dr Fc = 

which, using Eq. 3-6213 and the  result 

2U0a0 AU = 2a0(s2r AUT + V AUN) 

can be written as 

( 3-85 I 

( 3-86 I I 2 2 r 
aoc A@Jo a. cos 9 dr 

1 

Assuming that a. and c are constant d o n g  the  blade and using 

Eq. 3-66, Eq. 3-86 becomes 
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2 r 
1 

FS = p aoc U2(A0 - A$) sin $ dr 0 
1 

( 3-87 1 

+ (2& AUT + 2V AUN) a. sin $ 

1 + u: a. A$ cos $ 

Now A0, given by Eq. 3-73, is not a function of r. Hence, using 

Eq. 3-78, Eq. 3-87 can be rewritten in the form 

Introducing the nondimensional quantities 

the resultant steady velocity becomes 

or 

' 2  uo = w2 

( 3-89 

(3-90a) 



A d d i t  ionally, 

s i n  4 = X/W, cos 4 = n/W, t an  Cp = X/q 

Introducing the above notation in to  Eq. 3-88 yields 

where 
h 

AUN f r AUN 

( 3-92 

( 3-94 1 

The flapping monent induced by the ax ia l  component of the  

blade perturbation lift is given by 

or ,  using Eqs. 3-62a and 3-85, 

MB = $ ~[~~ r ( a o c ( U o  2 ACC + 262r AUTao 

( 3-96 1 

aocr A ~ U E C C ~  s in  4 dr I" 1 I 
Proceeding as f o r  F there f ina l ly  results r; 
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Although the coning angle Bo was assumed t o  have a negligible 

e f fec t  on the inflow geometry a first-order contribution t o  the 

flapping moment does arise as a consequence of the fact  t ha t  t he  

drag component of l i f t ,  AF 

Theelementalmoment due t o  precone is  

is offset  axially from the hub plane. 5' 

= AFgr s i n  Bo 1 AI? r $ ( 3-98 1 
@e0 5 0  

so that  

Proceeding as above fo r  F and MB: r 
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The aerodynamically induced collective pi tch changes alluded 

t o  earlier lead t o  perturbation thrus t  and torque terms. 

arise from the and rb, terms i n  AUn and AUT. It w i l l  be 

recalled tha t  r$, due t o  wing e l a s t i c  bending was  neglected. 

a t i l t - ro tor  a i r c ra f t  i n  free f l i gh t  a rigid-body ro l l ing  angular 

These 

For 

velocity a lso contributes t o  AUT via a term of t h i s  form (with 

= a i r c ra f t  r o l l  rate)* and could e be neglected i n  an a i r c ra f t  % 
dynamic s t a b i l i t y  analysis. This term is included here i n  tha t  

sense. The blade perturbation thrust  is  

AT = AF@c 
( 3-101 

where the subscript c is  used here and below t o  denote terms i n  

the quantit ies indicated which are of the col lect ive type. Using 

Eqs. 3-62a and 3-85 

*The cross flow over the rotors leads t o  the longitudinal 
and lateral forces and moments shown i n  Fig. 2-12c. 
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Now 

AT = - 1 [Is Aac + 2a0Slr AUT 
C 

2 paoc 

+ 2v A U ~  ao/ cos + - ~2 a sin + A+c dr I 0 0  C 

Aac = A0 - A$c 
C 

where 

and the collective type perturbation veloci t ies  are given by 

AUN = & 
C 

( 3-105 ) 
AUT = r$x 

C 

Substituting Eqs. 3-103 through 3-105 in to  Eq. 3-102, nondimension- 

sizing, and integrating over the blade span leads t o  
r 

2 2  
+ im2x X p dt.1 + 2Vi 

% 
( 3-106 1 
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With reference t o  Fig. 3-8 t he  blade perturbation torque is 

A Q = - r A F  
GC 

which leads t o  

- R'GXA r'CY o w  z d j  
'I1 

The aerodynamic development beyond t h i s  point w i l l  neglect thrust  

(i. e. a l l  terms containing ao) 

(2 )  Decomposition of B l a d e  Forces and Moments in to  Longitudinal 

and Lateral. Components and Summa.*ion Over the Nuniber of B l a d e s  - 
With the forces and moments defined as posit ive i n  the saae direc- 

t i on  as the corresponding displacements shown i n  Fig. 3-l the verti- 

c a l  and lateral components of the shear force F5 

given by 

(Fig. 3-8) are 

H = - F  C O S $  5 

Y = F s i n  $ 6 

( 3-109a) 

( 3-109b 
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and the  longitudinal and lateral components of the moments (Fig. 

3-81 by 

M s i n  9 + MB cos 9 (3-110a) 
0 

B M =  

N = - M  c o s $ + M  s i n $  ( 3-11Ob) 
B $0 

Subs t i tu t ing the  known expressions fo r  FS, Me, and M in to  Eqs. 
BO 

3-109 and 3-110 and summing over the number of blades (using the 

relat ions i n  Eq. 3-30) leads t o  

fo r  the  normal and side force shear components and 

d 



133 

M = $f12 IR I'lp [q%-al tan 6 3 - K l Y  4 s i n  e 
q1 

and 

for the longitudinal and lateral flapping moment components. 

thrust and torque become 

The 
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In  each of the above y is the blade Lock number defined by 

and the terms containing ABc 

blade collective pi tch changes through the  control system. 

forces and moments i n  Eqs. 3-111 through 3-116 were previously 

shown schematically i n  Fig. 2-12 of Chapter 2. 

have been dropped since there are no 

The 

(3)  Corrections f o r  Mach Number and Aspect Ratio - Compressi- 

b i l i t y  and the  effects  of f i n i t e  aspect r a t i o  blades are taken in to  

account approximately by modifying the  two-dimensional incompres- 

sible lift curve slope a. 

theory along the l i nes  suggested i n  Ref. 3-14. 

rections are applied t o  a the  Prandtl-Glauert factor  0' 

i n  the same manner as i n  fixed-wing 

Actually, two cor- 

,. 

t o  account fo r  the increase i n  aerodynamic forces as Mach number 

increases i n  the  subsonic Mach number range and a compressible flow 

aspect-ratio correction given by 
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= ( 3-119 ) comp 
+ 2  Ai c o w  

At incomp 

The overall correction is given by the product of these two factors 

and takes the form 

a0(2-D, WO) (3-120) incomp ao(3-D,M) = 

+ Atincomp 

where the helical Mach number 

the nondimensional quantities introduced earlier as 
%el can be expressed in terms of 

9 el = */A2 ( 3-121 

M being the flight Mach nmiber. Eq. 3-120 can be viewed as one 

form of the GGthert rule for three-dimensional compressible flow. 

(4 )  Inclusion of Theodorsen Unsteady Aerodynamics - Vortex 
shedding fromthe proprotor blades results in a lag of the blade 

local lift from its quasi-steady value based merely on the instan- 

taneous angle of attack. 

high advance ratios the wake effect can be approximately accounted 

for by multiplying the quasi-steady results by Theodorsen's circule 

tion function C(k). This effectively reduces the magnitude of the 

quasi-steady lift and induces a lag so that the true (unsteady) 

lift lags the quasi-steady lift. 

For high aspect ratio blades operating at 

Theodorsen's circulation function (Ref. 3-1) is a mathemati- 

cally complex function of reduced frequency which can be written in 
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the form 

C(k) = F(k) + i G ( k )  ( 3-122 1 

where F and G are defined i n  terms of Bessel functions of the 

first and second kind. The reduced frequency appropriate t o  Eq. 

3-122 is  given by 

where Vhel is the  he l ica l  velocity 

is  the wake frequency. 

at the  blade section and w 

The factor t o  be inserted in to  the integrands of a l l  the aero- 

dynamic terms which approximately accounts f o r  both three-dimen- 

sional compressible f l aw and the shed vor t ic i ty  is 

C(k) mincomp A(k, M) E 
I n 

Close inspection of the equations defining the  aerodynamic 

forces and moments indicates tha t  the integrals a.re of two general 

forms and can be defined as follows: 

n = 1,2,3 - - ("' iiw Tln-l dil 
Bn - 

nl 

If M = k = 0, these integrals  are realandhave closed form solu- 

t ions,  otherwise they must be evaluated numerically and are complex 
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if k # 0. 

expressions for  the forces and moments then follow from Eqs. 3-111 

Using the  definit ions of Eqs. 3-125 and 3-126 the  f ina l  

through 3-116 t~ 

H = - -f12 1 IR 9 [Bl(bl t an  63 - K 4 COS 8 
2 1 Y  

N = - - ys1 I B (b tan 63 - K 4 cos E + K2r$z s i n  e) :'[ R 3 1  l Y  

A . 
3 Y  l Y  

+ A x24 + 3 (4, + i,) - A5al + 

+ & 

(z - h 4 4 
(3-130) 

IRBo[-B2(al tan d3 + K cp s i n  + KZcpz cos E) 
2 l Y  

d 



138 

Eqs. 3-127 through 3-132 consti tute the  definit ion of t he  aerody- 

namic forces and moments acting on the proprotor. 

the  task of determining the  generalized forces t o  be usee i n  

Lagrange ' s equation. 

There now remains 

Generalized Aerodynamic Forces: The v i r tua l  work done by an 

applied force and moment w on a t ranslat ing and rotat ing 

r ig id  body (i.e. , the proprotor) ca,n be written as (Ref. 3-15) 

where F is  the resul tant  force acting on the proprotor, a the 

resultant moment, (Fig. 3-3) the position vector of the hub, and 

the rotation of the hub i n  space. The quantit ies i n  Eq. 3-133 

are given by 
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The virtual work can also be expressed i n  terms of the generalized 

forces Qr and displacements p. as 

N 

Substituting Eqs. 3-134 in to  Eq. 3-133 and equating the  resul t ing 

expression for  virtual work t o  tha t  given i n  Eq. 3-135 yields the 

generalized force matrix - 
T 

Y 

H 

M 

N ( 3-136 1 

The aerodynamic matrices i n  Eq. 3-8 follow from Eq. 3-136 by sub- 

s t i t u t ing  t h e  expressions f o r  the forces and moments given i n  Eqs. 

3-127 t o  3-132 and grouping terms according t o  whether they are 

proportional t o  the perturbation veloci t ies  o r  the  perturbation 

displacements. 

Defining 

the  aerodynamic matrices assume the  form given i n  Eqs. 3-137 and 

3-138. 
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Effects of Thrust on Propeller S tab i l i ty  Derivatives: Experi- 

mental and analytical  studies have generally demonstrated that the 

assumption of a windmilling (non-thrusting ) propeller or  proprotor 

i s  conservative i n  whirl  f lutter analyses. 

( R e f .  3-16) consti tutes,  t o  the author's best knowledge, the only 

published analytical  derivation expl ic i t ly  delineating the  effects  

of thrust  on the  s t a b i l i t y  derivatives required for  the whirl f lut-  

ter  analysis of a two degree of freedom propeller system. I n  the 

course of the present work the results of R e f .  3-16 were compared 

t o  those result ing from the results herein reduced t o  the two de- 

gree of freedom case considered by Ravera. This comparison identi- 

fied an apparent error  i n  Ravera's derivation and f ina l  resu l t s  fo r  

t h e  thrusting derivatives. 

jus t i f ica t ion  fo r  neglecting thrust  i n  propeller whirl f l u t t e r  

analyses it seems appropriate t o  comment on the discrepancy, par- 

t i cu l a r ly  as it relates t o  h i s  conclusion on the effects  of th rus t .  

The work of Ravera 

Since his  work i s  generally c i ted as a 

Making the  appropriate changes for  notation differences there 
0 

i s  agreement between R e f .  3-16 and the present work f o r  

In  resolving t h i s  t o t a l  l i f t  in to  components para l le l  and normal t o  

the freestream direction Ravera indicates (page 19 of Ref .  3-16) 

tha t  ( L  + hL) is  t o  be multiplied by cos @ and s i n  @ respec- 

t ively.  As shown i n  Eqs. 3-49 of the  present work, the correct 

factors are cos(@ + A@) and s in(@ + A+). As a consequence of 

L + AL. 

~~ 

* 
R e f .  3-16 does not consider drag. 
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t h i s  incorrect resolution the terms shown underlined in  Eqs.  3-52, 

3-93, and 3-97 are absent from Ravera's comparable expressions. To 

ascertain t h e  e f fec t  of these omitted terms on the  thrust  correction 

t o  the  windmilling derivatives presented by Ravera i n  R e f .  3-16 the 

numerical information therein was  used t o  evaluate the additional 

terms and the  s t a b i l i t y  derivatives including thrust  recalculated 

for  the  35,000 foot cruise flight condition shown i n  Table 3 of that  

reference. Results of t h i s  comparison are summarized below for the 

four derivatives specif ical ly  considered by Ravera. The notation 

i s  tha t  of R e f .  3-16, with a positive sign denoting a non-thrusting 

Percent Deviation from the Zero-Thrust Derivatives 

Derivative Ravera ( R e f .  3-16) Present Analysis 

C 

C 

C 

C 

VJ 
yJ, 

yq 

m 
9 

+7.31 

+3.10 

-4.40 

-3.10 

+3.65 

+6.93 

-2.22 

-6 0 77 

derivative larger  i n  magnitude than the  corresponding derivative in- 

cluding thrust and a negative sign denoting that the  thrusting de- 

r ivat ive i s  larger.  It is  seen that the only derivative which has 

increased due t o  the presence of t he  additional terms is  C . How- 

ever, as pointed out i n  Chapter 2, t he  cross-stiffness moment 

i s  the driving moment fo r  propeller w h i r l  f l u t t e r  and t h i s  deriva- 

yq 
C 
VJ 

t i v e  has been decreased. The other derivatives are of lesser 
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* 
importance. 

sion of thrust is somewhat less stabilizing than shown in Ref. 3-16, 

Ravera's conclusion that thrust is generally not a significant fac- 

tor in propeller whirl flutter analyses remains valid. 

Although the present analysis shows that the inclu- 

Representative Section Aerodynamic Theory: A n  intermediate 

effort during the analytical effort, for the purpose of providing a 

quick check on the aerodynamic formulation, was the use of a repre- 

sentative section aerodynandc theory for the blade loading. 

simplification the aerodynamic loading is lumped at some "represen- 

tative" blade spanwise station, akin to the typical section approxi- 

mation of a finite-span wing employed in early fixed-wing flutter 

analyses. To introduce this aerodynamic simplification it is 

assumed that all quantities which are a function of blade radius 

may be held constant during the integration if they are evaluated 

at the representative section, s a y  the 3/4 blade radius. The de- 

tails concerning this formulation are not presented here. However, 

since some analytical results employing this aerodynamic represen- 

tation are presented in Chapters 4 and 5 it was deemed appropriate 

to at least mention the basis of the theory. 

In this 

Solution of the Equations of Motion 

(a) Formulation of the Matrix Eigenvalue Problem 

Transferring the aerodynamic matrices in Eq. 3-8 to the left 

hand side and combining matrices the resultant equations of motion 

* 
This will be numerically demonstrated in Chapter 4. 



where 

[MI is symmetric and posi t ive def ini te ;  [C] and [K] are  non-sym- 

metric*, [K] being complex-valued. Eigenvalue routines t ha t  are  

available i n  computer l i b r a r i e s  generally require tha t  the  equa- 

t ions  be i n  the standard eigenvalue form 

[A]{X) = X{X) ( 3-141 

I f  [C] is  zero Eqs. 3-139 can eas i ly  be reduced t o  t h i s  form by the  

well-known method of multiplying through by the  inverse of [MI. In 

the more general case i n  which [C] is not zero t h i s  approach w i l l  

not work. It is  possible, however, t o  reduce Eqs.  3-139 t o  the 

required form using methods developed f o r  uncouplingthe forced 

equations of motion f o r  systems containing non-proportional dampin@; 

A brief review of these techniques i s  included here for  

completeness. 

* 
Mathematically, t h i s  lack of symmetry characterize6 f l u t t e r  

as a nonself-adJoint eigenvalue problem. 
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Review of Methods for  Uncoupling Systems of Equations with 

Dampin@;: 

namic system the equations of motion result ing from an application 

of Lagrange's equation can be wr i t ten  i n  the  matrix form 

In a lumped parameter analysis of a l inear ly  damped dy- 

I f  [MI, [C], and [K] are symmetric the c lass ica l  approach t o  the 

solution of these equations is  t o  f ind the eigenvectors of the  

reduced problem 

and use them t o  obtain the normal coordinates which w i l l  eliminate 

the i n e r t i a l  and e l a s t i c  coupling i n  Eqs. 3-142. 

shown by Rayleigh ( R e f .  3-17), unless [C] is l inear ly  proportional 

t o  e i ther  the mass or  s t i f fness  matrices (or  t o  a l inear  combina- 

t ion  of them) velocity coupling w i l l  s t i l l  exis t .  

the proport iondi ty  conditions stated above 

matrix composed of the eigenvectors of Eq. 3-143 w i l l  simultaneous- 

l y  diagonalize [MI, [C], and [K] so t ha t  the l e f t  hand side of Eqs.  

3-142 are completely uncoupled. 

i n  N-space, where N 

However, as first 

If [C] fulf i l ls  
I) 

the  transformation 

The system i s  said t o  be solvable 

i s  the number of degrees of freedom. 

If [C] does not satisfy the proportionality conditions the 

classical  uncoupling approach does not work because the natural  

modes are complex, ind ica t ing tha t  both amplitude and phase 

* 
Caughey ( R e f .  3-18) showed tha t  the  damped system can be 

completely diagonalized under somewhat less r e s t r i c t ive  conditions 
on [C] than t h a t  given by Rayleigh. 
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distinguish the components i n  each vector. 

vector corresponding t o  a mode of an undamped o r  proportionally 

damped system has components which are distinguished from other 

components of the  same vector by q l i t u d e  only, the  phase being 

zero or 180° as determined by the  sign. 

required t o  determine a l l  components of a mode f o r  an N degree of 

freedom system w i t h  non-proportional damping. Hence t o  the  I? 

equations of motion must be added another N equations. The auxi- 

l i a r y  equations are generally taken t o  be those given i n  Ref. 3-19. 

This i n  effect  transforms the problem t o  2I?-space, the transforma- 

t ion  being such tha t  the 

by an equivalent set of 2N first order equations. If [MIw1 

exis ts  t h i s  method w i l l  a l w a y s  work. 

and posit ive def ini te ,  

2N-space: 

al; (2) [C] and/or [K] i s  not symmetric. In the  first case the 

eigenvectors obtained from the  solution of the  homogeneous form of 

the 2N equations of motion serve as a sui table  transformation 

matrix t o  uncouple the  2N forced equations of motion. If the  

matrices are not symmetric the  system of equations is  said t o  be 

nonself-adjoint. The preceding manipulations i n  2I? space must 

In  contrast, the  r e d  

2I? equations are thus 

N equations of second order are replaced 

Since [MI i s  symmetric and 

two d is t inc t  cases present themselves i n  
46 

(1) [C]  and [K] are symmetric and [C] i s  non-proportion- 

then be augmented by corresponding manipulations on the 

equations adjoint t o  the  2N equations. The matrlx of 

set of 

eigenvectors 

* 
assumed t h a t  [MI is  posit ive definite.  

[MI could, i n  general, be posit ive semi-definite. Here it i s  

d 
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of the  equations adjoint t o  the 2N equations are used i n  conjunc- 

t ion  with the set of eigenvectors of the or iginal  2.N equations t o  

diagonalize the or iginal  2N non-homogeneous equations, This 

leads t o  a set of uncoupled equations i n  what are sometimes termed 

bi-normal coordinates. 

lengthy and w i l l  not be deal t  with here. 

these procedures of in te res t  here is the  means for effecting the 

transformation t o  2%-space. 

below. 

The de ta i l s  concerning these procedures are 

The par t icular  aspect of 
0 

This w i l l  be dealt w i t h  i n  detail 

Transformation of the Proprotor Equations of Motion in to  

Eigenvalue Form: Multiplying Eq. 3-139 through by 

and introducing the  N generalized veloci t ies  as auxiliary vari- 

ables by means of the matrix ident i ty  

{i, - @3 = (01 

Eqs. 3-144 and 3-145 can be combined t o  yield 

E11 
I 0 I 

i 
-[M]-l[K] 1 I -[M]'l[C] 

* 
The interested reader is  referred t o  the  discussions i n  R e f s .  

3-20 through 3-23 for treatment of these various aspects. 



Defining 

{w3 = ]-.I ex3 

Eq. 3-146 can be writ ten i n  the compact form 

= [AIcW) 

where the definit ion of [A] is obvious. 

form 

Assuming a solution of the  

A t  ( ~ 3  = {W 3 e 
0 

Eq. 3-148 reduces t o  

which i s  i n  the desired eigenvalue form. Writing Eq. 3-150 i n  the 

form 

the equations are seen t o  consti tute a homogeneous set of complex 

algebraic equations. Requiring t h a t  t h i s  set of equations have 

more than jus t  the t r i v i a l  solution corresponding t o  a state of 

rest implies tha t  the determinant of coefficients i n  Eq. 3-151 

vanish. This i s  the c lass ica l  characteristic-value or  eigenvalue 

problem i n  which it is  required t o  determine the  

t r i v i a l  solutions t o  the homogeneous equations 3-151 exist. 

(b) Interpretation of Results 

A for  which non- 

Eigensolutions: Solution of Eq. 3-151 leads t o  2N complex 
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eigenvalues and eigenvectors I f  [A] is r e a l  (i.e.,  i f  

[MI, [ C ] ,  and [K]  are rea l )  the eigenvdues and eigenvectors occur 

i n  N complex conjugate pairs ;  i f  [A] is  complex the 2N eigen- 

values and eigenvectors are d is t inc t .  Experience has shown tha t  for  

f l u t t e r  solutions only roots having posit ive imaginary part  ( i .e . ,  

posit ive frequency) have any physical significance as far as the 

actual system behavior is  concerned. Discarding the negative 

frequency roots (and t h e i r  associated eigenvectors) the pth eigen- 

value has the general form 

P 

X = a  + i f 3  
P P  P 

and can be interpreted as 

1 n 

(3-152a) 

i s  the  damping as a fraction of c r i t i c a l  damping and 
where <P 
w i s  the undamped coupled frequency. For 6.1 # 0, i f  5 w > 0 

P P P P  
t h e  motion i s  exponentially convergent while for  w 0 the 

motion i s  exponentially divergent. 

of velocity i n  the complex plane a concise picture of the variation 

of system s t a b i l i t y  with airspeed can be established. 

use w i l l  be made of these "root loci" i n  Chapters 4 and 5. 

The complex vector associated with the eigenvalue 

P P  
Plot.f;ing ( 5  ,a ) as a function 

P P  

Extensive 

can be 
P 

written i n  the form 
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The upper N 

define the  mode shape. 

differences ex is t  between the  harmonic motions at  different  points 

of the  system i n  a given mode of motion. The re la t ive  amplitude 

and phasing existing i n  a given mode could be ascertained by con- 

verting the complex elements of the mode t o  polar form and then 

normalizing on one of them. 

elements {w ("3 i n  each modall vector of 2N elements 

Since these elements are complex, phase 

Whirl Direction: "he pylon whirl  direction i n  any given mode 

can be established by plot t ing the  elements of the  vector corre- 

sponding t o  pylon pi tch and yaw i n  the complex plane and interpre- 

t i n g  the phasing from the  rotat ing vector comgonents.* A f t e r  doing 

t h i s  manually several times it became evident t ha t  a specific orien- 

t a t ion  of the pylon pi tch and yaw vectors on the complex plane w a s  

associated with the  forward and backward whirl directions,  as indi- 

cated i n  Fig. 3-9. This suggests a numerical procedure t o  ascer- 

t a in  the whirl direction. L e t  

;6 = a + i b = a ' i : + b J  

qz = c + i d  = c'i: + d j  

Y (3-154) 

be the complex elements corresponding t o  pylon pi tch and yaw i n  any 

eigenvector. Forming the vector cross product 8,  X gives 
Y 

= (bc - ad)E ( 3-155) 

* 
All complex components i n  a given mode have the same frequen- 

cy and decay rate; only the  phase is  different .  
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Eq. 3-155, i n  conjunction with the  commentary i n  Fig. 3-10,indi- 

cates tha t  for  

Forward whirl-bc - ad > 0 

Backward whirl-be - ad < 0 
( 3-156) 

Deterznining the  direction of pylon whirl thus reduces t o  simply 

establishing the sign of the  quantity (bc - ad). 

The w h i r l  direction of the tip-path-plane i n  space requires 

the pr ior  evaluation of a and bl i n  space. This i s  estab- 

l ished by first adding zl t o  qY and 5, t o  5, and then using 

the relat ions i n  Eq. 3-156. 

1 

( c )  Note on Solution of the  S tab i l i t y  Determinant 

The use of unsteady aerodynamics i s  generally a prerequisite 

for  subsonic fixed-wing f l u t t e r  analyses. Because unsteady aero- 

dynamic formulations, such as follow from a kernel function o r  

doublet-lattice approach, have a complicated dependence on reduced 

frequency they are,  i n  practice,  defined only for  harmonic motion 

(A = if3). This precludes the more general solution approach of 

searching fo r  frequency solutions of the form and the  

s t a b i l i t y  analysis i s  limited t o  locating the  s t a b i l i t y  boundaries 

of the system, i .e .  those conditions fo r  which neutral  s t a b i l i t y  

= a + if3 

( A  = if3) exis ts .  Since f l u t t e r  is  concerned with the  borderline 

case between exponentially damped and exponentidly divergent 

osci l la t ions,  characterized by a self-sustained motion of constant 

amplitude (i.e. , A = if3) the specification of harmonic motion i n  

the aerodynamics i s  adequate fo r  establishing f l u t t e r  boundaries. 
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Often, however, aeroelast ic  problems require more than j u s t  the 

determination of the f l u t t e r  speed. I n  order t o  be able t o  predict  

the r a t e  of approach t o  a f l u t t e r  speed and the  subsequent violence 

of the in s t ab i l i t y ,  the  response on e i ther  s ide of the  c r i t i c a l  

point must be known. 

of a theory quite often only subcr i t ica l  data  from wind tunnel or  

Also, i n  establishing the degree of va l id i ty  

f l i gh t  tests are available f o r  correlation. 

In the customary V-g method of f l u t t e r  analysis" the struc- 

t u r a l  damping which m u s t  be a r t i f i c i a l l y  supplied t o  o r  withdrawn 

from the system t o  j u s t  maintain constant amplitude motion (i .e. ,  

the simple harmonic motion character is t ic  of neutral  s t a b i l i t y )  i n  

the  mode i n  question is  regarded as the  unknown. The f l u t t e r  point 

i s  established when the required ( a r t i f i c i a l )  damping is  equal t o  

the actual damping i n  some mode. This approach i s  consistent w i t h  

the  fact  tha t  the aerodynamics have been defined only f o r  harmonic 

motion. Damping solutions away from the f l u t t e r  point have no 

d i rec t  re la t ion  t o  the t rue  system damping and the slope of the g 

vs V curve can not, i n  general, be taken as an indication of t he  

severity of f l u t t e r .  Zisfein, Frueh, and Miller (Refs. 3-24 and 

3-25) have shown tha t  under cer ta in  simplifying assumptions the 

required damping calculated by the 
-i- 

t he  t rue  r a t e  of decay as a function of airspeed. 

V-g analysis can be related t o  

A more recent 

*See, for  example, Ref. 3-1. 
+ b o t h e r  procedure for establishing such a relationship has 

been given by Scanlan and Rosenbaum (Ref. 3-26). 
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development by Hassig (Ref. 3-27) provides for an approximate true 

damping solution by a determinant iteration scheme using the 

equations based on aerodynamics defined only for simple harmonic 

mot ion. 

If quasi-steady aerodynamics are employed, such as in the 

formulation herein, the aerodynamics need not be restricted to mo- 

tions which are harmonic and a true damping solution can be obtained 

from the calculated eigenvalues in accordance with Eqs. 3-152. The 

slopes of the resulting 5 versus V curves are now a direct 

measure of the sensitivity of the system modes to increases in air- 

speed. 

means of Theodorsen's circulation function, although the general 

frequency solution a + if3 is obtained the results are strictly 

applicable only at the neutral stability condition since the circu- 

lation function was originally defined only for simple harmonic 

motion. It is also to be noted that for the case in which the 

reduced frequency is not zero the aerodynamic matrices are explicit 

and implicit functions of both reduced frequency 

This implies that the aerodynamics can not be specified simply by 

choosing the reduced frequency as in fixed-wing flutter formula- 

tions and a modified iterative approach must be used. 

procedure is described in Chapter 5. 

In the case in which unsteady effects are approximated by 

airspeed. 

A suggested 
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hl - Longitudinal distance from effective pylon pitch pivot to proprotor hub 

h2 - Longitudinal distance from effective pylon yaw pivot to proprotor hub 

hl - Longitudinal distance from effective pylon pitch pivot to pylon center-of-gravity 

h2 - Longitudinal distance from effective py16n yaw pivot to pylon center-of-gravity 

c - Vertical distance of pylon center-of-gravity from proprotor shaft axis 

- 

- 

Figure 3-2.- Rigid body idealization employed for pylon showing 
non-coincident pitch and yaw pivot axes. 
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Figure 3-3.- Displacement vectors and auxiliary coordinate systems 
used i n  obtaining the absolute velocity of a blade 
element mass. 
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Figure 3-5.- Idealization employed to represent 
the pylon support stiffnesses. 
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.j, i s  no& t o  
paper and directed 
downward 

Figure 3-7.- Perturbation velocit ies  at blade section. 
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AFg i s  normal t o  paper 

and directed upward 

I 

Figure 3-8.- Perturbation forces and moments act ing on blade section. 
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Forward Whirl 

;6, x ijy positive 

Backward Whirl 

5, x qY negative. 

Figure 3-9.- Determination of pylon whirl direction. 
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CHAPTER 4 

ANALYTICAL TREND STUDIES 

Introduction 

Proprotor/pylon i n s t a b i l i t y ,  l i k e  propeller/nacelle whirl  

f l u t t e r ,  i s  an i n s t a b i l i t y  associated with t h e  high advance r a t i o s  

typ ica l ly  encountered i n  high-speed f l i g h t  and, as i n  propel ler  

whirl f l u t t e r ,  pylon/wing s t i f fnes s  and demping have a mador 

influence on s t a b i l i t y .  

and pitch-change freedoms available t o  the  proprotor, pylon 

support s t i f f n e s s  and damping are not the only parameters governing 

s t a b i l i t y .  

t i o n ,  such as proprotor type, pitch-flap coupling, and blade 

flapping r e s t r a i n t  also assume a major role i n  determining the  

resu l tan t  s t a b i l i t y  or i n s t a b i l i t y  of the proprotor/pylon/wing 

system. 

are  generally dictated by considerations other  than s t a b i l i t y  

t h e i r  influence on the s t a b i l i t y  of the  overal l  system must 

nevertheless be assessed. The additional freedoms i n  which a 

proprotor is  able t o  respond can also give rise t o  a dynamic 

environment i n  which the  proprotor/pylon/wing system can exhibi t  

i n s t a b i l i t i e s  i n  modes other  than the  familiar propeller/nacelle 

precessional mode. In  par t icu lar ,  depending on the  charac te r i s t ics  

of the  system, i n s t a b i l i t i e s  associated with e i the r  the  proprotor, 

pylon, o r  wing modes can occur. The poss ib i l i t y  t h a t  two unstable 

However, because of the  blade flapping 

Design parameters associated with t h e  ro tor  configura- 

Although the design values of these par t icu lar  parameters 
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response modes can occur simultaneously, or nearly SO, a l so  exists.* 

This leads t o  so-called "bi-modal" i n s t a b i l i t i e s  i n  which the  pylon 

responds i n  a steady or continuously changing LissaJous pattern.  

Other a i r c ra f t  character is t ics  which expl ic i t ly  depend upon the 

dynamic behavior of the proprotor must also be considered. 

include steady-state flapping, t ransient  flapping required t o  

generate the air load moments t o  precess the proprotor i n  response 

t o  a i r c r a f t  maneuvers, and the destabil izing sheas forces which 

accompany any precessional motion of the  proprotor. These shears 

can destabi l ize  the a i r c ra f t  short period and Dutch r o l l  modes i n  

the same manner as the proprotor/pylon/wing e l a s t i c  system. 

Based on the equations developed i n  Chapter 3 th i s  chapter 

will present the principal findings of some generalized trend 

studies shedding additional l i g h t  on the  ro le  of several system 

design parameters on proprotor/pylon s t a b i l i t y ,  frequency response 

character is t ics  of the  proprotor-generated shear forces and moments, 

and proprotor flapping. The specif ic  configuration chosen t o  form 

the basis  of these parametric studies i s  the B e l l  Model 266 tilt- 

proprotor design developed during the Army Composite Aircraft  

Program i n  1966-1967. 

the high-speed proprotor cruise mode w a s  shown e a r l i e r  i n  Fig. 1-6. 

Attention herein is  directed t o  considerations of the right-hand 

proprotor/pylon/wing system taken t o  be cantilevered at the wing 

root with the proprotor f u l l y  converted forward. 

These 

An artist's conception of the Model 266 i n  

* 
See, for  example, Refs. 4-1 and 4-2. 



The chapter is  divided in to  f ive  sections. Some of the  dis- 

tinguishing design features of the Model 266 are presented f i r s t .  

Proprotor/pylon in s t ab i l i t y  involves an intimate coupling between 

cer ta in  proprotor flapping modes and pylon motions. 

t h i s  coupling is  b r i e f ly  discussed i n  the next section. 

followed by fundamental considerations of proprotor/pylon i n s t a b i l i t y  

as affected by pylon/wing s t i f fnes s  and damping, pitch-flap coupling, 

blade flapping r e s t r a i n t ,  and blade flapping frequency. 

presenting the frequency response character is t ics  of the  proprotor 

shears and moments and blade flapping conclude the  chapter. 

The nature of 

This is 

Sections 

The trend studies included i n  t h i s  chapter have been selected 

with a view toward delineating some of the sa l ien t  dynamic response 

character is t ics  of a proprotor/-pylon/wing system. 

response character is t ics  of the shear forces and moments and blade 

flapping will, where appropriate, be examined i n  l i gh t  of their  

e f fec ts  on proprotor/pylon s t a b i l i t y ,  a i r c ra f t  rigid-body s t a b i l i t y ,  

and flapping behavior. Some selected analyt ical  studies extending 

and complementing the  results of t h i s  chapter are also included 

i n  Chapter 5 .  

The frequency 

Some Characterist ic Design Features of the Model 266 

The Model 266 represents a design evolution of the XV-3 

convertiplane. It has two, three-bladed, contra-rotating proprotors 

of semi-rigid, teeter ing,  or  seesaw type i n  which the blades are 

r ig id ly  attached t o  the  yoke spindles of a non-underslung hub/yoke 

assembly. The hub assembly is  i n  tu rn  gimbal-mounted t o  the dr ive 

d 



sha f t  (mast) t o  permit flapping o r  t i l t i n g  of the tip-path-plane 

r e l a t ive  t o  the mast. 

pitch-change bearings housed i n  the blade grips.  

fugal force i s  carr ied t o  the  yoke by a retent ion s t r ap  inside 

the spindle bore. 

yoke spindles t o  minimize steady blade out-of-plane bending moments 

and reduce feathering bearing loads. 

inplane, the lowest frequency being above t h e  ro to r  ro ta t iona l  

speed for  a l l  operating ranges. 

inplane frequency i s  about 1.5 cycles/rev. 

flapping r e s t r a i n t  (which is  equivalent t o  blade flapping r e s t r a i n t )  

located i n  the non-rotating system is  employed t o  improve the 

a i r c r a f t  control power and response charac te r i s t ics  i n  p i tch  while 

operating i n  the helicopter mode. 

implies t h a t  pitching moments a re  produced d i r ec t ly  as a result of 

t i l t i n g  the  proprotor d i sc ,  thereby augmenting control  moments from 

t i l t i n g  of the  th rus t  vector. 

B l a d e  feathering motion i s  provided by 

The blade centri-  

Three degrees of precone are b u i l t  i n t o  the hub 

The blades a re  r e l a t ive ly  stiff 

In  the  airplane mode the first 

A non-symmetric hub- 

Its locat ion i n  the fixed system 

Blade p i tch  control  is effected through a conventional helicop- 

ter-type swashplate assembly. The p i tch  l i n k s  a re  connected t o  

p i tch  horns on the  t r a i l i n g  edge of the  blades so that when the 

blades f l a p  up the  blade p i tch  increases,  t ha t  i s ,  pos i t ive  pitch- 

f l a p  coupling (negative 

conventional negative pitch-flap coupling (posi t ive cS3) .  Pitch- 

f l a p  coupling i s  employed on proprotors t o  reduce first harmonic 

flapping. Although e i the r  posi t ive o r  negative d3 w i l l  reduce 

one-per-rev flapping, considerations of blade flap-lag s t a b i l i t y  

d3)  i s  employed i n  contrast  topthe more 

d 
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(Ref. 4-3) d ic t a t e  the  use of negative 63 on the  Model 266. 

The propulsion system consis ts  of a T64 f r e e  turbine engine 

and associated gearbox located i n  each of t h e  wing t i p  mounted 

pylons. The e f f ec t  of the opposing requirements of high blade 

t w i s t  and low s o l i d i t y  i n  c ru ise  and low t w i s t  with high so l id i ty  

i n  helicopter f l i g h t  are minimized by reducing the  ro tor  rpm i n  

the  airplane c ru ise  mode, thereby increasing propulsive efficiency. 

Some of the primary design parameters of the  Model 266 are 

summarized i n  Table 4-1. The interested reader w i l l  f ind  a more 

detai led account of t he  Model 266 design i n  the state-of-the-art 

paper by Wernicke (Ref. 4-4). Complete documentation of t he  design 

may be found i n  Ref. 4-5. The par t icu lar  physical parameters 

employed i n  the analyt ical  t rend  s tudies  are given i n  Table 4-2. 

The Rotor/Pylon Dynamic System 

(a )  Flapping Modes of a Gimbaled Proprotor 

A three-bladed semi-rigid proprotor such as on the  Model 266 

has two uncoupled r i g i d  body flapping modes. 

coordinate system these two modes have the  same frequency and damp- 

ing but one involves precession i n  the d i rec t ion  of ro tor  ro ta t ion  

and the  other precession opposite t o  the d i rec t ion  of ro tor  

rotat ion.  

I n  the  ro ta t ing  

Their frequency and damping, as derived i n  Appendix B, 

a r e  given by 

d 
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-5 % - 4w 
B 

(4-2 

Note t h a t  i n  the  absence of flapping r e s t r a i n t  and pitch-flap 

coupiing the na tura l  frequency of these  modes i n  the  ro ta t ing  

system are  one-per-rev ( l / r ev ) .  U s e  of flapping r e s t r a i n t  i n  

conJunction with posi t ive o r  negative pitch-flap coupling raises or 

lowers the natural  frequency of these modes from l / rev .  It is of 

i n t e re s t  t o  examine these modes as they would appear t o  en observer 

i n  the non-rotating system. With reference t o  the sketch below the  

required transformation from ro ta t ing  system tip-path-plane 

coordinates alR I) blR t o  fixed system tip-path-plane coordinates 

A 

a1 I) bl i s  given by 

d 
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a 1 = a  1R c o s S 2 t -  blR s i n  62 t 

bl = a s i n  Q t + blR cos 62 t 1R 

A forward w h i r l  precessional motion of the tip-path-plane i n  the  

ro t a t ing  system can be wri t ten as 

- 
a = a c o s w t  
1R B 

(4-4) 
- 

blR = a s i n  w B t 

where uB 

a i s  the amplitude of w h i r l .  Subst i tut ing Eqs. 4-4 i n t o  Eqs. 4-3 

and making use of trigonometric i den t i t i e s ,  

i s  the flapping na tura l  frequency defined by Eq. 4-1 and 
- 

- 
= - a [cos(w - Q)t + cos (w + 62)t 

“1 2 B B 

- cos(w - Q)t + c0s(wg + Q)t] B 

- 
a bl = [sin(w + 62)t - sin(w - Q)t B B 

+ s in (@ - Q)t + sin(wB + Q ) t l  B 

Eqs. 4-5 reduce t o  

d 
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- 
a = a cos(w + S 2 ) t  
1 B 

- 
bl = a s i n  ( w  + S2)t 8 

Eqs. 4-6 indicate  t h a t  a forward whirl  i n  the  ro t a t ing  system 

transforms t o  a forward whirl  i n  the f ixed system i f  

than, equal t o ,  o r  l e s s  than 52. 
wB 

i s  greater 

A backward whirl precessional motion of the  tip-path-plane 

i n  the ro ta t ing  system can be wri t ten as 

- yR = a c o s  w t B 

- 
blR = -a s i n  w t B 

Subst i tut ing Eqs.  4-7 i n t o  Eqs.  4-3 and proceeding as above y ie lds  

- 
a = a cos(w - 51)t 
1 B 

- 
bl = -a s in (@ - S2)t B 

(4-8) 

as t h e  motion i n  the  f ixed system. 

ward whirl  i n  the ro ta t ing  system the  motion observed i n  the fixed 

> 51 , a steady longi tudinal  tilt system i s  a backward whirl  i f  

= 52 and a forward whirl  i f  w < 52 . of the  tip-path-plane i f  

Note t h a t  for t he  case of back- 

WB 

wB B 
The above considerations are a l s o  d i rec t ly  applicable t o  the  

blade inplane whirl  modes which "appear" i n  the  ro ta t ing  system as 

a forward and backward whirl of the cg of t h e  displaced blades. 



I n  the fixed system, the flapping modes manifest themselves as 

a weaving or wobbling of the tip-path-plane i n  the forward or back- 

w a r d  directions.  For the  par t icu lar  combination of posi t ive pitch- 

f l a p  coupling and hub r e s t r a i n t  employed on the  Model 266 the 

flapping natural  frequency i n  the  ro ta t ing  system at  l o w  airspeeds 

i s  ,875 cycles/rev and decreases with increasing airspeed while the  

associated damping is  about 30 percent of c r i t i c a l  and also de- 

creases with airspeed. 

cons t i tu te  a low frequency forward precession of the  tip-path-plane 

at ,125 cycles/rev and a high frequency forward precession at  

1.875 cycles/rev. 

I n  the  fixed system these flapping modes 

I n  the  absence of precone(steady-state coning f o r  t he  case of 

a ro tor  w i t h  o f f se t  flapping hinges)the flapping modes can not 

f l u t t e r  by themselves. However, i n  t he  presence of precone these 

modes can be destabil ized. I n  par t icu lar ,  posi t ive precone has a 

destabi l iz ing e f f ec t  upon the  high frequency flapping mode and 

negative precone is destabi l iz ing upon the  low frequency flapping 

mode. For cotor rpm typica l  of proprotor c ru ise  operations the 

precone required f o r  i n s t a b i l i t y  is much l a rge r  than tha t  which 

ex i s t s  i n  pract ice  and these precone-induced flapping i n s t a b i l i t i e s  

are mainly of academic in t e re s t .  

For completeness, it should be pointed out that the r i g i d  body 

flapping modes can a l so  be destabi l ized by coupling with blade 

inplane elast i i ,  bending, the coupling i n  one such i n s t a b i l i t y  being 

associated with the sign of the pitch-flap coupling r a t i o  and another 

d 



being caused by e l a s t i c  coning i n  the presence of control system/ 

blade tors ion f l e x i b i l i t y .  

of i n s t a b i l i t i e s  i s  given i n  Refs. 4-3 and 4-6. 

A comprehensive treatment of these types 

Before closing t h i s  discussion on flapping it should be noted 

t h a t  the flapping due t o  small mast angle of a t t ack  is a l/rev 

forced response i n  which the  blades f l a p  with respect t o  the  swash- 

p l a t e  so as t o  minimize the cycl ic  var ia t ion  i n  blade section angle 

of a t tack  around the azimuth. 

longitudinal and/or l a t e r a l  tilt of the tip-path-plane i n  the  

fixed system. The flapping natural  frequency, 

of the  t rans ien t  motion which would be observed i n  the  ro ta t ing  

system i f  the  tip-path-plane of steady l / r e v  flapping were set 

i n t o  motion by "plucking". 

(b )  The Role of Pylon Freedoms 

This flapping appears as a steady 

i s  the  frequency , 

The r i g i d  body flapping modes of a s t i f f  inglane proprotor 

with zero precone can not f l u t t e r  by themselves. 

proprotor i s  mounted on a pylon which has freedom of motion, both 

t h e  pylon modes and the  flapping modes can be destabil ized. Since 

angular motions of the  pylon represent angular motions of the  

control plane i n  space fo r  a proprotor having the  swashplate 

r ig id ly  attached t o  the  pylon, pylon motions and flapping motions 

are strongly coupled. 

i n s t a b i l i t y  associated with one of t h e  pylon modes and occurring 

near a pylon-mode coupled natural  frequency the  shear forces can 

des tab i l ize  the  flapping modes, 

When t h i s  

I n  addition t o  the  familiar pylon whirl  

A flapping mode i n s t a b i l i t y  appears 
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ae a whirl of the  tip-path-plane and pylon near a tip-path-plane 

coupled natural  frequency with la rge  flapping i n  space. 

i n s t a b i l i t y  encountered i n  the Ames tunnel i n  1962 w a s  i n  a low- 

frequency, backward whi r l  flapping mode.) I n  general t h e  low- 

frequency flapping mode can be destabi l ized f o r  r e l a t ive ly  low 

pylon support s t i f fnes ses  i n  combination with la rge  values of 

flapping r e s t r a i n t  or pos i t ive  

mode can be destabi l ized i f  t he  pylon support s t i f fnesses  are such 

as t o  place the  pylon mode frequencies c lose t o  the  second flapping 

mode frequency. 

(The XV-3 

The high-frequency flapping 63' 

Several aspects of rotor/pylon mode coupling w i l l  be brought 

out i n  the following sections.  

Proprotor/Fylon Ins tab i le ty  

Because of the  addi t ional  flapping and feathering freedoms 

available t o  a proprotor and the  many ro to r  design parameters 

which can influence s t a b i l i t y  the  dynamic charac te r i s t ics  of the 

typ ica l  proprotor are such t h a t  various types of i n s t a b i l i t i e s  

associated w i t h  t he  proprotor/pylon/wing system can occur. 

influence of several  s t ruc tu ra l  and kinematic parameters on 

proprotor/pylon s t a b i l i t y  w i l l  be presented here i n  a manner which 

w i l l  hopefully provide useful  design guidelines. 

based on an idealized proprotor/pylon/wing system i n  accordance w i t h  

the mathematical model developed i n  Chapter 3 and embodied i n  

computer program PRSTAB6. 

at i t s  root the results are, of course, not indicat ive of s t a b i l i t y  

The 

The results are 

Since the  wing i s  taken as cantilevered 



i n  free-fl ight.  

on s t a b i l i t y  f o r  the Model 266 since i ts  free-f l ight  s t a b i l i t y  i s  

increased compared t o  t h a t  of the cantilevered wing. Wing e l a s t i -  

c i t y  5s accounted fo r  i n  terms of equivalent wing t i p  spring rates 

referenced t o  the pylon mast/conversion axis intersect ion.  

insure a blade flapping frequency independent of azimuth a symmetric 

hub r e s t r a i n t  w a s  employed i n  the t rend studies.  

e f f ec t s ,  except i n  one case, a r e  neglected. 

(a)  Pylon Support S t i f fness  

Theee results do however, represent a lower bound 

TO 

Mach number 

Proprotor/pylon combinations employing proprotors with more 

than two blades are generally r ig id ly  mounted t o  the  wing t i p s  t o  

take maximum advantage of the s t i f f n e s s  and damping inherent i n  

the  wing s t ructure .  

pylon/wing junction w i l l  then have a strong influence on s t a b i l i t y .  

I n  such an arrangement the pylon freedoms a r e  equivalent t o  cer ta in  

wing freedoms: 

ro ta t iona l  component of wing inplane bending, e tc .  The e f f ec t s  

of several  of these pylon support s t i f fnes ses  on proprotor/pylon 

s t a b i l i t y  w i l l  be established below i n  the  manner of R e f .  4-7 by 

sequentially adding pylon degrees of freedom t o  the  basic  tip-path- 

plane p i tch  and yaw-degrees of freedom of the  proprotor. 

results generally extend those of R e f .  4-7 i n  that both flapping 

restraint and pitch-flap coupling are taken t o  be non-zero 

(representing a more r e a l i s t i c  proprotor design condition) 

damping e f f ec t s  axe indicated,  and several  addi t ional  features  a re  

included . 

The ef fec t ive  wing support conditions a t  the  

pylon p i tch  t o  wing tors ion,  pylon yaw t o  the 

These 



Pylon Pitch: The s t a b i l i t y  of the three degree-of-freedom 

system which includes the  pylon p i tch  (wing tors ion)  degree of 

freedom i s  given i n  Fig. 4-1. The f l u t t e r  speed is  p lo t ted  as a 

function of t he  uncoupled pylon p i tch  s t a t i c  natural frequency* 

normalized on the  proprotor speed at  which the s t a b i l i t y  calcula- 

t i ons  were made. -t. I n s t a b i l i t y  occurs i n  the pylon p i tch  mode, 

being driven by the destabi l iz ing shear force component inphase 

with the p i tch  rate. This i l l u s t r a t e s  t h a t  a proprotor can be 

dynamically destabi l ized i n  a s ingle  plane, i n  contrast  t o  a 

propeller/nacelle combination. A t  t h e  higher p i tch  frequencies 

r e f l ec t ive  of current design pract ice ,  pylon damping is  seen t o  

have a negligible s t ab i l i z ing  e f f ec t .  

Pylon Yaw: The e f f ec t s  of adding the pylon yaw degree of 

freedom t o  the 3' of freedom system are indicated i n  Fig. 4-2 fo r  

/n = 0.80. Here the  f l u t t e r  speed i s  given as p i tch  the  case of w 

a function of the  r a t i o  of uncoupled pylon yaw natural  frequency 

t o  uncoupled pylon p i tch  natural  frequency. The dramatically 

destabi l iz ing e f f ec t s  of pylon isotropy are c lear ly  evident i n  

the  extended region of i n s t a b i l i t y  along the  l i n e  representing a 

s t i f f n e s s  r a t i o  of unity. Pylon damping i s  seen t o  be qui te  

e f fec t ive  i n  s t ab i l i z ing  the  system under isotropic  and near 

isotropic  support conditions but has only a small e f fec t  f o r  

*The uncoupled s t a t i c  na tura l  frequency is taken t o  be that observed 
i n  the  t rans ien t  response resu l t ing  from s t a t i c a l l y  displacing the  
system i n  the degree of freedom i n  question and releasing it, all 
other degrees of freedom bbing "locked out" with zero ro tor  rpm. 

fMode designations herePn are based on the uncoupled mode motion 
which predominates i n  the  coupled mode. 

d 



non-isotropic support conditions. 

For pylon yaw-to-pitch frequency r a t i o s  below .75/rev f l u t t e r  

i s  i n  the pylon yaw mode, with the  pylon and tip-path-plane 

precessing i n  the forward whirl  direct ion near the  pylon yaw 

couplid n a t u r a l  frequency. As the  frequency r a t i o  i s  increased 

beyond .75/rev the f l u t t e r  mode i n i t i a l l y  changes t o  a backward 

w h i r l  associated w i t h  the  pylon p i tch  mode and then, at  l .h/rev,  

changes back t o  a forward whirl  but remaining associated w i t h  the  

pylon p i tch  mode. Note t h a t  i f  the frequency r a t i o  i s  greater  than 

about 1 .5  the e f f ec t  of adding the  yaw degree of freedom ( i .e . ,  the  

freedom i n  the s t i f f e r  d i rec t ion)  i s  negligible.  

i l l u s t r a t e d  by includitng the s t a b i l i t y  boundary f o r  the case of 

no pylon yaw freedom. For pylons which are r ig id ly  attached t o  

the  wing t i p s  the  yaw-to-pitch frequency r a t i o  w i l l  normally be 

about 2.0 t o  3.0. For the  Model 266 thig r a t i o  is  2.24. 

Th i s  i s  fur ther  

A s  a s ide l igh t ,  results based on the use of a representative 

section aerodynamic theory a re  also shown. This theory, as 

indicated i n  Chapter 3 ,  lumps the  aerodynamic loading at some 

representative" blade radial s t a t ion  i n  a manner not unlike the 

so-called typ ica l  section approaches employed i n  ear ly  fixed-wing 

f l u t t e r  analyses. The spec i f ic  r e s u l t s  shown indicate  that the  

locat ion of the  "correct" representative sect ion moves inboard 

on the blades as the f l u t t e r  airspeed increases. 

11 

Wing Beam: The addition of the wing beam degree of freedom 

(E v e r t i c a l  t r ans l a t iona l  component of wing v e r t i c a l  bending) t o  
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a pylon which has freedom i n  p i tch  permits the wing beam freedom 

t o  couple wi th  pylon p i tch  t o  create  two pylbn/wing modes of motion: 

a so-called inphase mode i n  which the pylon pitching motion and 

wing ve r t i ca l  displacement are i n  the same di rec t ion  and an out-of- 

phase mode i n  which the pitching motion of the  pylon is i n  a 

d i rec t ion  opposite t o  that  of the  wing v e r t i c a l  displacement. 

of these coupled modes is characterized by the  predominance of an 

uncoupled mode: the former by wing v e r t i c a l  displacement and the  

la t te r  by pylon pitching (wing tors ion) .  For descr ipt ive purposes 

the inphase coupled pylonlwing mode i n  which wing v e r t i c a l  bending 

predominates w i l l  be herein designated as the  wing beam mode and 

the  out-of-phase coupled pylon/wing mode i n  which pylon pitching 

(wing tors ion)  motion predominates will be designated as the pylon 

p i tch  [or  wing tors ion)  mode. 

by frequency considerations: 

the uncoupled wing v e r t i c a l  bending natural  frequency and the  

out-of-phase mode osc i l l a t e s  near the uncoupled pylon p i tch  (wing 

tors ion)  natural  frequency. 

pure pitching motion about a node located aft of t he  pylon physical 

pivot; the  pylon p i tch  mode is  equivalent t o  a pure pitching motion 

about a node between the proprotor disc  and the  physical pivot.  

Each 

These designations a re  a l so  prompted 

the inphase mode has a frequency near 

The wing beam mode i s  equivalent t o  a 

The e f f ec t  of adding the  wing beam degree of freedom 

t o  the bo of freedom system above can be s t ab i l i z ing  or destabi l iz-  

ing depending on i t s  frequency r a t i o  with respect t o  pylon pi tch.  

T h i s  is i l l u s t r a t e d  i n  Fig. 443. A t  very low levels of wing beam 

frequency the  pylon motion involves mainly v e r t i c a l  t rans la t ion ,  

d 
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w i t h  very l i t t l e  precession of t he  proprotor i n  space. 

precession-generated shears, which cons t i tu te  t he  destabi l iz ing 

forces,  are thus i n i t i a l l y  dominated by the  s t ab i l i z ing  damping 

contribution associated with hub t r ans l a t iona l  motion. T h i s  does 

not represent a v iab le  design solut ion however, since t h e  

corresponding wing s t i f fnesses  would be too low t o  s a t i s f y  basic  

s t r e n g t h  requirements. 

occurs i n  the wing beam mode, t he  pylon/rotor combination executing 

a forward whirl  precession. 

the s t a b i l i t y  i n i t i a l l y  decreases qu i t e  rapidly because the 

coupling between wing beam and pylon p i tch  increases,  the coupling 

having t h e  dual effect  of moving the  e f fec t ive  pivot forward 

toward t h e  physical pivot,  thereby reducing hub t r ans l a t iona l  

damping, and reducing the  e f fec t ive  pylon p i tch  s t i f fnes s .  

s t a b i l i t y  continues t o  decrease as wing beam frequency i s  further 

increased because the wing beam mode begins t o  couple with the  

low frequency (52 - w ) flapping mode. 

52 < .40) the  i n s t a b i l i t y  is s t i l l  i n  the  wing beam mode with the  

pylon/rotor combination executing a forward precessional w h i r l  

motion. Because of the strong coupling with a flapping mode a 

considerable amount of flapping ( i n  space) distinguishes the 

f l u t t e r  mode i n  t h i s  region. If w were equal t o  52 t he  fre- 

quency of the  low frequency flapping mode i n  the  fixed system would 

be zero, there  would be no coupling with t h i s  mode and the  elon- 

gated region of i n s t a b i l i t y  shown i n  Fig. 4-3 about 

The 

F l u t t e r  at these low s t i f f n e s s  l eve l s  

As the  wing beam frequency i s  increased 

The 

I n  t h i s  region ( .10 < B 

B 

Wbeam/Q = .25 
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would not occur*. 

.70/rev an abrupt reduction i n  s t a b i l i t y  occurs i n  a small range of 

frequency about .80/rev, the reduction being qui te  la rge  f o r  zero 

damping. 

(the out-of-phase coupled pylon/wing mode) with l a rge  flapping i n  

space. When p i tch  i s  out of phase with wing beam motion the  

effect ive pylon p i tch  s t i f f n e s s  increases with increasing wing beam 

s t i f fnes s  u n t i l  the  pylon p i tch  mode couples with the  high 

frequency ( 0  + w 1 flapping mode. 6 
mode are  the  w h i r l  d i rect ion:  

precessional wh i r l  while the  tip-path-plane w h i r l s  i n  the  forward 

direct ion r e l a t ive  t o  space. For nonzero damping only a s l igh t  

reduction i n  s t a b i l i t y  occurs; f l u t t e r  is  i n  the  wing beam mode 

w i t h  both the pylon and tip-path-plane whirling i n  the forward 

direction. 

modes f o r  both values of damping a r e  ident ica l ,  a forward whirl  

i n  the  wing beam mode. 

As wing beam frequency is  increased beyond 

For no damping the  i n s t a b i l i t y  i s  i n  the  pylon p i tch  mode 

Unusual features  of t he  f l u t t e r  

t h e  pylon exhibits a backward 

For wing beam frequencies beyond .80/rev the  f l u t t e r  

Wing Chord: The e f f ec t s  of adding the  fore-and-aft t ranslat ion-  

a l  component of wing inplane bending (E wing chord) t o  the  5' of 

freedom system a re  summarized i n  Fig. 4-4, 

i s  increased the  f l u t t e r  mode changes from a forward whirl  i n  the  

pylon yaw mode t o  a forward w h i r l  i n  t he  wing beam mode. Because 

of t h i s  change i n  f l u t t e r  mode, pylon damping has no e f f ec t  upon 

s t a b i l i t y  beyond wchord /fl = .30. Wing chord frequency r a t i o s  

As wing chord s t i f f n e s s  

*See Fig. 7c of Ref. 4-7. 
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beyond about .5/rev are seen t o  have a negligible influence upon 

stat  il it y . 
The ef fec ts  of Mach number upon s t a b i l i t y  are indicated fo r  

the  region of chord frequencies greater  than. .3/rev. 

Prandtl-Glauert and compressible f l o w  aspect r a t i o  corrections are 

ref lected i n  the Mach-number-corrected results. 

expected, s t a b i l i t y  i s  decreased. 

(b)  Pitch-Flap Coupling 

Both the 

As might be 

Considerations of blade flapping while operating i n  the high- 

speed proprotor mode generally indicate that flapping amplitudes 

must be reduced. One means of effecting a reduction i n  flapping 

i s  through the use of pitch-flap coupling (6 ). E i t h e r  posit ive 

or negative pitch-flap coupling (-6 o r  +6 ) i s  effect ive i n  

reducing flapping. 

of freedom proprotor/pylon system f o r  the case of non-isotropic 

pylon supports fo r  two values of hub r e s t r a in t  and two rotor rpm 

a re  displayed i n  Fig. 4-5. The destabil izing e f fec ts  of large 

posit ive or negative 63 on proprotor/pylon s t a b i l i t y  are note- 

worthy and const i tute  the  most s ignif icant  feature of 63 as 

regards proprotor/pylon s t ab i l i t y .  

the w i d e  range of 

the e f fec ts  of 6 on s t ab i l i t y .  The maximum values of posi t ive 

o r  negative 63 are i n  practice dictated by considerations of 

blade flap-lag s t a b i l i t y  and s t a t i c  divergence ( R e f .  4-3) and 

generally f a l l  well within the extremes shown. 

3 

3 3 
The ef fec ts  of 63 on the s t a b i l i t y  of the 4' 

It should be pointed out t ha t  

63 values shown was chosen t o  be t t e r  i l l u s t r a t e  

3 

d 
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f c )  Flapping Res t r a in t  

A summary of the  results concerning the e f f ec t  of f lapping 

r e s t r a i n t  (as re f lec ted  i n  the blade flapping natural  frequency) 

on proprotor/pylon s t a b i l i t y  i s  given i n  Fig. 4-6 f o r  both the  four 

and five degree-of-freedom systems. 6 was  s e t  t o  zero so t h a t  

the uncoupled flapping natural  frequency would be independent of 

aerodynamic conditions. 

3 

For the  4' of freedom case maximum 

s t a b i l i t y  occurs at a blade flapping na tura l  frequency of about 

1.12 cycles/rev. This i s  i n  agreement with the results of Young 

and Lytwyn (Ref. 4-1) who ana ly t ica l ly  demonstrated tha t  the  

pylon support s t i f f n e s s  and/or damping requirements fo r  prevention 

of w h i r l  f l u t t e r  are a minimum when the  blade fundamental flapping 

natural  frequency is  1.1 t o  1.2 cycles/rev.# It i s  of i n t e re s t  

t o  describe the change i n  f l u t t e r  mode as flapping frequency i s  

increased from l / r ev .  This  w i l l  be done with the a id  of root  l o c i  

showing the  frequency and damping var ia t ion  w i t h  airspeed f o r  each 

of the modes of the system, arrows indicating the  d i rec t ion  of 

root  movement w i t h  increasing airspeed. The root designation 

selected fo r  t he  root l o c i  p lo t s  was  suggested by the  f ac t  t ha t  

each of the coupled modes of t he  system is  characterized by the  

predominance of an uncoupled mode. 

For frequencies below about 1.09 cycles/rev f l u t t e r  is  i n  the  

forward w h i r l  pylon p i tch  mode. 

*Ref. 4-1 established t h i s  optimum on the basis of considerations 
on a ro tor  having cen t r a l ly  hinged flapping blades rest rained by 
springs. More recent ly ,  R e f .  4-8 demonstrated t h a t  t h i s  optimum 
a l so  e x i s t s  when the  flapping restraint i s  achieved through a 
combination of hinge o f f se t  and spring r e s t r a i n t .  

The root locus f o r  the  par t icu lar  
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case of w /Q 

low frequency 

B = 1.0 is given i n  Fig. 4-7. Flu t t e r  occurs i n  the  

- 62) flapping mode f o r  w /Q > 1.09 (Fig. L8), 9 3  B 
t h e  pylon/rotor combination precessing i n  the  backward whirl  

direction. It i s  t o  be noted t h a t  these whirl  direct ions are also 

i n  agreement with the  findings of Ref. 4-1. 

Fig. 4-6 also shows the e f f ec t s  of including the  wing beam 

Maximum s t a b i l i t y  occurs at about degree of freedom. 

indicating t h a t  a "design optimum" i n  the sense of Ref. 4-1 also 

ex i s t s  i n  the more genera3 case which includes wing v e r t i c a l  

bending. Note t h a t  wing beam freedom is s l i g h t l y  destabi l iz ing a t  

low values of w /f2 and s t ab i l i z ing  at  higher values of wB/62. 

This is  associated with the  f l u t t e r  mode shape. A t  low blade 

flapping frequencies wing beam motion i s  inphase with pylon p i tch  

thereby reducing the  e f fec t ive  p i tch  s t i f f n e s s  r e l a t ive  t o  the  

case f o r  no wing beam freedom. 

pylon s t a b i l i t y .  

and wing beam are  out of phase with each other ,  e f fec t ive ly  

s t i f fen ing  the pylon i n  p i tch ,  which i s  s tab i l iz ing .  

wB/62 = 1.14, 

B 

This i s  destabi l iz ing on proprotor/ 

A t  t he  higher flapping frequencies pylon p i tch  

The var ia t ion i n  f l u t t e r  mode and d i rec t ion  of pylon whirl  

with increasing flapping frequency is of par t icu lar  i n t e re s t  i n  

t h i s  case, there  being several  such changes. 

f l u t t e r  i s  i n  the  wing beam mode with the pylon/rotor combination 

precessing i n  the  forward whirl  direct ion.  For w /Q between 

1.09 and 1.16 a backward whirl  i n s t a b i l i t y  i n  the  pylon p i tch  

mode occurs. 

Below w /62  = 1.09 B 

B 

The high frequency (61 + 62) flapping mode is  unstable B 

d 
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forward direct ion.  Beyond 1.65 f l u t t e r  is  i n  the  low frequency 

( u ~  - Q) flapping mode, the whirl  now occurring i n  the backward 

precessional direction. Root l o c i  showing the  root  movement 

leading t o  each of these f l u t t e r  modes a re  presented i n  Figs. 

w /52 between 1.16 and 1.65, the  w h i r l  now being again i n  the B 

4-9 t o  4-12. 

The maximum value of flapping r e s t r a i n t  which can be employed 

i n  pract ice  is  dictated by considerations of allowable blade loads." 

T h i s  generally l i m i t s  the  maximum flapping frequency ( f o r  6 

t o  values well below 1.5 cycles/rev, depending on the par t icu lar  

design. The r e su l t s  of Fig. 4-6 a re  thus f o r  the  most par t  mainly 

= 0) 3 

of academic interest. 

( d )  Effects of Pitch-Flap Coupling on S tab i l i t y  of the Five Degree- 
of-Freedom System 

An indication of t he  e f f ec t s  of 6 on proprotor/pylon 

s t a b i l i t y  for the case i n  which wing beam freedom i s  included are 

3 

displayed i n  Fig. 4-13. The sharp reduct ionin s t a b i l i t y  associated 

with large values of 

mode w i t h  the  low-frequency flapping mode, t he  frequency of which 
63 arise from the coupling of t he  wing beam 

i n  the f ixed system is increased by posi t ive o r  negative 

each case shown, f l u t t e r  i s  i n  the wing beam mode w i t h  t he  direct ion 

63. In  

of pylon whir l  being determined by the  flapping natural  frequency 

as indicated. The flapping frequency at which s t a b i l i t y  i s  a 

*See, for  example, the  "Review and Discussion" of Ref. 4-1 by 
Wernicke and Gaffey which forms an in t eg ra l  par t  of t h a t  reference. 

d 
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niaxirnum occurs i n  the range 1.02 t o  1.05 cycles/rev f o r  the  range 

of parameters studied. 

frequency i n  the sense of R e f .  4-1 a lso  e x i s t s  f o r  

This suggests t h a t  an optimum flapping 

63 # 0 and 

f o r  %/63 combinations. t 

Frequency Response Character is t ics  of Proprotor Shear Force and 

Moment Derivatives 

It was shown i n  Chapter 2 that a i r load  moments are required t o  

precess a proprotor i n  response t o  pylon osc i l l a to ry  motions. A t  

high advance r a t i o s  these moments are accompanied by shekn forces 

which are  phased with the  pylon motion such tha t  they tend t o  

increase i t s  pitching o r  yawing veloci ty  and hence const i tute  

negative damping on the pylon motions. 

forces which destabilize the proprotor/pylon/wing e l a s t i c  system 

These shears are the  primary 

and the  a i r c r a f t  r i g i d  body modes. 

Disturbances occurring i n  f l i g h t  can, depending on their  

frequency content, exc i te  the  e l a s t i c  proprotor/pylon/wing system 

or the  a i r c r a f t  r i g i d  body modes i n  an osc i l l a to ry  manner. Any 

motions of t h i s  type e f fec t ive ly  represent osc i l la tory  motions of 

the  proprotor mast (control axis) i n  space. Since the  proprotor- 

generated forces and moments are a function of these osc i l l a to ry  

motions it i s  of i n t e re s t  t o  examine the dependency of the fre-  

quency response charac te r i s t ics  of these forces and moments on 

several  system design parameters. 

'Young and Lytwyn did not consider 63 effects .  

d 
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Proprotor inplane shear forces are proportional t o  the  t i p -  

path-plane precessional rate i n  space, Now the relat ionship of 

the  proprotor response i n  space t o  that  of t h e  control  plane 

(swashp1ate)is quite complicated,depending on the proprotor i n e r t i a l  

propert ies ,  airspeed, rpm, flapping r e s t r a i n t ,  pitch-flap coupling, 

and control  feedbacks. Consequently both proprotor/pylon s t a b i l i t y  

and a i r c r a f t  rigid-body s t a b i l i t y  will be sens i t ive  t o  thoee 

parameters which a f f ec t  proprotor response. The e f fec t  of several  

such parameters on the frequency response charac te r i s t ics  of these 

forces and moments w i l l  be delineated below by examining t h e i r  

var ia t ion during sinusoidal pitching osc i l l a t ions  of the  pylon.# 

Attention i s  directed t o  the  p i tch  plane only s ince,  neglecting 

flow asymmetries and assuming a symmetric hub r e s t r a i n t ,  the  forces 

and moments generated by yawing osc i l l a t ions  follow d i r e c t l y  from 

the p i tch  r e su l t s  by v i r tue  of symmetry. 

The majority of these studies are fo r  a veloci ty  of 350 knots 

and a ro tor  speed of 238 rpm. 

(V/QR) of 1.23. 

t e n t  with maximum propulsive eff ic iency i n  the high-speed cru ise  

This represents a t i p  inflow r a t i o  

Although t h i s  i s  somewhat l a rge r  than tha t  consis- 

mode of f l i g h t ,  it i s  a value which can be real ized i n  an overspeed 

f l i g h t  condition. Also, during wind-tunnel tests of s c d e d  models 

( i n  which the ful l -scale  V/m is  maintained) t e s t i n g  is done 

beyond scaled f l i g h t  speeds t o  es tab l i sh  margins of safety.  A l l  

results are based on the  analysis developed i n  Appendix C. 

"This i s  equivalent t o  control axis pitching motions i f  the swash- 
p l a t e  is fixed t o  the mast. 



The resu l tan t  shears and moments act ing on a harmonically 

m c i l l a t i n g  proprotor are algebraical ly  complex quant i t ies  indicating 

that componentE proportional t o  both p i tch  angle and p i tch  r a t e  

Contribute t o  t h e i r  absolute value. 

t a t i o n  of these forces and moments they w i l l  be separated in to  the 

above-mentioned components i n  the studies t o  be presented below. 

The separation of the  normal force and pitching moment in to  com- 

ponents inphase with p i tch  angle and p i tch  rate i s  schematically 

i l l u s t r a t e d  i n  the sketch below. The components proportional t o  

p i tch  angle a re  normalized by the  maximum pi tch  amplitude 

To f a c i l i t a t e  the interpre- 

am 

a = am s i n  w t 
P 

01 = a w cos u t  = q cos u t  
m P  P P 

while the components proportional t o  p i tch  r a t e  are normalized 

by the  maximum pi tch  rate q (= a w ). Normalized i n  t h i s  

manner the forces and moments assume the  form of derivatives.  

With reference t o  the  H-force components, t he  aH/aorm term is the 

portion of the t o t a l  H-force which is  inphase or  180' out-of-phase 

with the pylon p i t ch  displacement. 

m P  

When it i s  inphase w i t h  the  



pi tch  displacement it ac t s  as a negative spring force tending t o  

reduce the e f fec t ive  pylon p i tch  stiffness; when it is  180' 

out-of-phase w i t h  the pylon displacement it a c t s  as a pos i t ive  

spring force,  tending t o  increase t h e  pylon p i tch  s t i f fnes s .  

aH/aam is  a maximum a t  a = am and zero when a = 0. The 

aH/aq term is the  component of t he  t o t a l  H-force which is  inphase 

o r  180' out-of-phase w i t h  t he  pylon p i tch  r a t e .  It cons t i tu tes  

a negative (destabi l iz ing)  damping on the pylon pitching motion 

when it is inphase with the  pitching veloci ty  and posi t ive damping 

when it is  180' out-of-phase with the  pitching velocity.  a H / a q  

i s  a maximum when a = 0 and zero when a = a The sign 

convention which w i l l  be employed i n  the  graphical results is  

given i n  Fig. 4-14. 

(a )  Proprotor Rotational Speed 

m' 

The frequency response charac te r i s t ics  of the  shear forces and 

moments f o r  two values of rpm are shown i n  Fig. 4-15. Consider the  

var ia t ion of the normal force component. The proprotor contri-  

butes large negative damping t o  pylon motions of low frequency. 

If the  pylon coupled natural  frequency falls  within t h i s  range 

(below 2.5 cps f o r  52 = 300 rpm, f o r  example) t he  negative damping 

from the H-force w i l l  at some forward speed exceed the inherent 

s t ruc tu ra l  damping and any posi t ive aerodynamic damping and 

i n s t a b i l i t y  will result. As frequency is  increased the negative 

damping decreases and eventually becomes posit ive.  

aH/aam 

quency i n  pi tch.  Hence, even i f  the  pylon coupled natural  

Simultaneously, 

increases i n  a manner t o  reduce the  pylon natural  fre- 

d 



frequency is  suf f ic ien t ly  high t o  ensure a s tab i l iz ing  contribution 

from a H / a q ,  the increasing negative spring e f fec t  of aH/3am 

with increasing airspeed (see Fig. 4-16a) will ac t  so as t o  reduce 

the  pylon coupled natural  frequency u n t i l  aH/aq becomes 

destabi l iz ing and the negative damping ef fec t  is f ina l ly  able t o  

overcome the combined posi t ive damping. 

mechanism by which the pylon pi tch mode w a s  driven unstable i n  the 

results f o r  the 3 O  of freedom system shown i n  Fig. 4-1. 

T h i s  is precisely the 

The magnitude and phase of aH/aam and a H / a q  are seen t o  be 

strongly dependent on the pylon pi tch frequency and hence on the 

magnitude and phase of the tip-path-plane response (Al) r e l a t ive  

t o  the motion of the  pylon mast (&). For a steady continuous 

pitching motion i n  which w = 0,  il i s  zero and aH/aq contri- 
e p  

butes a large negative damping force t o  pylon motfons. 

pylon is osc i l la t ing  i s  not zero. The tip-path-plane 

response can be quite large i f  the pylon is excited a t  one of 

the fixed-system flapping natural  frequencies. 

When the 

The c re s t s  and 

troughs apparent i n  the response curves are associated with the 

fixed system flapping modes. For the par t icular  ro tor  parameters 

indicated, aH/aam and aH/aq become more destabil izing at  pylon 

frequencies near 52 - w while fo r  pylon frequencies near 

52 + w aH/aam becomes less destabil izing and aH/3q becomes 

less s tabi l iz ing.  This implies t ha t  parameters which alter the  

proprotor flapping natural  frequency can s ignif icant ly  a f fec t  the 

B 

B 

s t a b i l i t y  of both the pylon modes and the flapping modes. The 

d 
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r e su l t s  presented e a r l i e r  i n  Figs. 4-6 t o  4-12 are indicat ive of 

these e f fec ts  f o r  t he  case of flapping r e s t r a i n t .  

A t  low pylon p i tch  frequencies the  proprotor tip-path-plane 

i s  essent ia l ly  inphase with the  pylon angle (al :: 0) and the  t o t a l  

H-force is predominantly inphase w i t h  the p i tch  r a t e .  The damping 

component of the  H-force then predominates at low pylon 

frequencies. 

d i sc  begins t o  l a g  the pylon motion more and more u n t i l  the  

tip-path-plane eventually assumes a fixed v e r t i c a l  or ientat ion i n  

space, being unable t o  respond fast enough t o  the  high 

frequency pylon osc i l la t ions .  

dominantly inphase with the  pylon p i tch  displacement and the 

destabi l iz ing forces ac t  on the  pylon primarily i n  the sense of 

a negative spring. Summarizing, the  e f f ec t  of t he  proprotor on 

pylon osc i l la t ions  i s  t o  reduce both damping and frequency, t he  

negative damping predominating at low pylon frequencies and a 

negative spring term predominating at  higher pylon frequencies. 

Note tha t  as the proprotor rpm is increased the p i t ch  

As the  pylon frequency i s  increased the  proprotor 

The t o t a l  H-force i s  then pre- 

frequency at  which aH/aq becomes s t ab i l i z ing  increases,  implying 

that increased pylon s t i f f n e s s  and/or damping would be required 

t o  maintain the same l eve l  of s t a b i l i t y  as rpm increases. 

Considerations s i m i l a r  t o  those above are generally applicable 

t o  the pitching moment response charac te r i s t ics  shown i n  Fig. 4-1%. 

Since proprotors usually have some type of flapping r e s t r a i n t  

( i n  the form of a spring, flex-hinge or o f f se t  flapping hinge) 



these moments can be transferred t o  the pylon and, with reference 

t o  Fig. 4 - 1 5 ~ ~  can contribute e i ther  a s tab i l iz ing  o r  destabil izing 

influence on pylon motions. 

indicated aM/aq i s  destabil izing for  pylon pi tch frequencies 

located near the fixed system flapping mode frequencies; the  

opposite is t rue  for  aM/aa , .  The corresponding s ide force and 

yawing moment response character is t ics  are presented i n  Figs. 

For t h e  par t icular  conditions 

4-15b and d. 

Tilt-proprotor a i r c r a f t  are generally designed t o  have 

contra-rotating rotors  i n  order t o  minimize the coupling between 

longitudinal and l a t e r a l  r i g id  body motions. 

Figs. 2-12a and 2-12b it is then seen that the s ide forces and 

yawing moments cancel out during a i r c r a f t  pitching motions while 

the normal forces and pitching moments sum t o  zero during yawing 

motions. 

(b )  Airspeed 

With reference t o  

The ef fec ts  of forward f l i gh t  velocity on the  frequency 

response of the normal force and pitching moment a re  shown i n  

Fig. 4-16. 

frequency i s  normaliied on the rpm, i n  accordance w i t h  customary 

practice i n  rotary-wing dynamics. The e f fec t  of increased airspeed 

is seen t o  be an increase i n  the magnitude of the  forces and 

moments, as might have been expected. There is a negligible 

influence on the pylon pi tch frequency at which aH/aq contributes 

posit ive damping, i n  contrast  t o  the case of increasing ro tor  rpm. 

Since the  rotor  rpm w i l l  remain fixed the pylon pi tch 

d 
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This suggests tha t  the destabil izing e f fec ts  of increasing airspeed 

are solely a result of the  increasing magnitude of aH/aam and 

aH/ aq. 
( c )  Pitch-Flap Coupling 

The negative damping contributed by the proprotor is  a 

function of the amplitude and phase of the tip-path-plane response 

r e l a t ive  t o  the motion of the  control axis. Two factors  which 

increase the rotor  response r a t e  a re  +63 and 5 since they both 

ac t  t o  increase the flapping natural  frequency. 

on the frequency response of the  normal force and pitching moment 

derivatives for  the case of zero hub r e s t r a in t  are shown i n  

Fig. 4-17. 

flapping natural  frequencies i n  the ro ta t ing  system are  1.0,  

.74, and 1 .2  cycles/rev, respectively. 

system frequencies of 

seen i n  the response curves at those frequencies. There i s  no 

low-frequency peak fo r  

frequency i n  the fixed system. Note tha t  the use of 63 decreases 

the destabil izing aH/aam forces at low pylon frequencies but 

increases the aH/aq forces,  This indicates that  63 i s  

destabi l iz ing on the a i r c r a f t  short period mode. 

frequencies d3 can be s tab i l iz ing  o r  destabil izing r e l a t ive  t o  

the  63 = 0 case depending on the pylon frequency. 

The e f fec t  of 63 

For 63 = 0, -22-1/2°, and +22-1/2', the  corresponding 

These modes occur a t  fixed 

152 f w I and lead t o  the c re s t s  and troughs 8 

63 = 0 because t h i s  mode has zero 

A t  higher 

The destabil izing e f fec t  of 6 on proprotor/pylon 3 
s t a b i l i t y  demonstrated earlier i n  Fig. 4-5 can be explained with 

d 



reference t o  Fig. 4-1Tb. As airspeed increases aH/acrm decreases 

the pylon pi tch s t i f fness  more and more u n t i l  aH/aq becomes 

destabil izing. The magnitude of aH/aq i s  larger  for  cS3 # 0 

and hence can more quickly exceed the  net posit ive damping i n  the  

system as  pylon frequency continues t o  be reduced. 

t h i s  may be viewed as the pylon being destabil izing by coupling 

with the  low-frequency flapping mode at a lower airspeed since 

increased 6 moves t h i s  frequency t o  the r ight .  

Alternatively, 

3 
The frequency of the second flapping mode e i ther  increases 

or decreases depending on whether 63 i s  posit ive or negative. 

The design consideration of separating the pylon modes from the  

flapping modes indicates t ha t  careful attention must be directed 

t o  the  system coupled frequency spectrum when employing e i ther  

posit ive or negative . 
(d )  Flapping Restraint 

63 

The increase i n  the proprotor response rate due t o  flapping 

restraint can be s tab i l iz ing  or  destabil izing depending on i ts  

value and the frequency of pylon osci l la t ion.  This i s  brought 

out i n  Fig. 4-18. Increased % i s  seen t o  lessen the destabil iz- 

ing e f fec t  of aH/aq at l o w  frequencies (aH/aq even becomes 

s tab i l iz ing  for  very large values of 

s tab i l iz ing  e f fec t  at intermediate pi tch frequencies. 

%) but decreases i t s  

It is  of in te res t  t o  examine the  variation of the zero 

pitch-frequency force and mment derivatives with flapping r e s t r a in t  

and interpret  the  l imit ing conditions of i n f i n i t e  flapping r e s t r a in t  

d 



i n  l i g h t  of the results shown for a propeller i n  Fig. 2-14 which 

were cjbtained by simple physical considerations. These r e su l t s  are 

summarized i n  Fig. 4-19 f o r  three values of 

increased t o  " inf ini ty"  the  der ivat ives  w i l l  be asymptotic t o  the  

propel ler  limits indicated. It is seen tha t ,  i n  agreement with the 

results of Fig. 2-14, aY/3ctm and aM/3ctm go t o  zero while 

aH/aam, a H / a q ,  aY/aq, aM/aq, %/actm, and a N / a q  approach non-zero l i m i t s .  

As 5 is  63 

The l imi t ing  direct ions are also i n  agreement wkth those shown i n  

Fig. 2-14. Note t h a t  of a l l  the  non-zero l imi t ing  values a l l  are 

small except 

moments which 

(and a M / W m )  

aH/aam and aN/actm. Hence of the  forces and 

can destiabilize the backward whirl  mode only 

a re  of suf f ic ien t  magnitude t o  do so. 

aN/aam 

This then 

const i tutes  another "proof" t h a t  the  cross-stiffness moments a re  

the  driving terms f o r  backward whirl  f l u t t e r  of a propeller.  

(e )  Shaft Length 

Fig. 4-20 i l l u s t r a t e s  t he  e f f ec t  of shaf t  length on the 

normal force and pitching moment frequency response behavior of a 

proprotor and propeller.  Since these results are f o r  a forced 

response of the proprotor/pylon system the  differences between 

the r e su l t s  f o r  h = 6.92 and h = 0 are indicat ive o f t h e  

aerodynamic damping associated with transverse ve loc i t ies  of t he  

proprotor o r  propel ler  hub. 

s t ab i l i z ing  i n  the  sense t h a t  hub t r ans l a t iona l  damping i s  

increased. 

t o  4-11 f o r  the case of a propeller.  

which fbccompany increases i n  shaf t  length are accounted f o r ,  t he  

Increasing the  shaf t  length is 

This has already been shown ana ly t ica l ly  i n  Refs. 4-9 

If the  changes i n  i n e r t i a  
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s tab i l iz ing  e f fec t  due t o  increased hub t rans la t iona l  damping is 

essent ia l ly  negated by the destabil izing e f fec t  of a decrease i n  

the effect ive pylon support s t i f fnes s  i n  pi tch and yaw so tha t  

the net s t a b i l i t y  of the  system is basical ly  unchanged.* It i s  t o  

be noted t h a t  t h i s  conclusion i s  not i n  agreement with tha t  of 

Ref. 4-11 which found t h a t  t he  net s t a b i l i t y  of t he  system was  

s ignif icant ly  increased even i f  the increase i n  system i n e r t i a  w a s  

taken into account. 

For the  case of a proprotor t he  net e f fec t  of increased shaft  

length i s  highly destabil izing on w h i r l  f l u t t e r .  This i s  a 

consequence of the  frequency response character is t ics  of the 

proprotor H-forces. 

fo r  pylon pi tch frequencies beyond about . 5  cycles/rev increased 

shaft length is  aerodynamically s tabi l iz ing.  However, as airspeed 

increases the increasing negative spring e f fec t  of aH/aqm reduces 

the pylon frequency u n t i l  a H / a q  becomes destabil izing. In t h i s  

range of pylon frequencies increases i n  shaf t  length are  seen t o  

have a negligible aerodynamic effect .  Since the effect ive pylon 

pi tch s t i f fnes s  has been reduced the net e f fec t  of increased shaft 

length is destabil izing. 

With reference t o  Fig. 4-20a it is  seen tha t  

The propeller forces and moments are constant w i t h  frequency 

of excitation because, as pointed out i n  Chapter 2,there i s  no lag 

of the  propeller disc r e l a t ive  t o  i t s  shaft .  This a lso causes 

~ 

*These results are not shown herein. 
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aH/aam t o  be independent of shaf t  length. Recal-ling t h a t  aM/aq 

i s  a function of the  d i sc  p i tch  r a t e  i n  space shaft length has no 

e f f ec t  on t h i s  derivative.  aM/3crm is of course ident ica l ly  zero 

fo r  a propeller.  

(f) Al%itude 

The manner i n  which the zero frequency normal force der ivat ives  

vary with a l t i t u d e  are given i n  Fig. 4-21. a H / a q  increases with 

a l t i tude .  

shears on the a i r c r a f t  short  period and Dutch r o l l  modes. 

the  horizontal  and v e r t i c a l  t a i l  contributions t o  a i r c r a f t  damping 

i n  p i tch  and yaw remain r e l a t ive ly  constant with a l t i t u d e  the 

proprotor contribution t o  these a i r c r a f t  motions becomes increasingly 

des tab i l iz ing  with a l t i tude .  The decreasing magnitude of 3H/ aam 

w i t h  increasing a l t i t u d e  indicates  t h a t  a i r c r a f t  longitudinal 

and lateral s t a t i c  s t a b i l i t y  are increased with a l t i t ude .  

(g  1 Proprotor S tab i l iza t ion  by Blade Pi tch Control Feedback 

Th i s  implies a destabi l iz ing e f f ec t  of the  inplane 

Since 

Inplane shears generated by propcotor precession i n  response 

t o  pylon motion a re  the  cause of i n s t ab i l i t y .  

dependent on the  motion of t he  tip-path-plane i n  space, o r ,  what 

i s  equivalent, t h e  motion of t he  tip-path-plane r e l a t i v e  t o  

the  swashplate (control  plane). The preceding r e s u l t s  were based 

on the assumption t h a t  the  center l ine of the  mast and the  control 

axis were ident ica l ,  since t h e  swashplate w a s  taken t o  be r ig id ly  

affixed t o  the shaf t .  

T h i s  induces blade angle of a t t ack  changes, resu l t ing  i n  precess- 

ional  a i r load  moments which are accompanied by 

These forces  are 

When the  shaf t  pitches t h e  swashplate follows. 
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destabilizing shear forces. 

from the pylon or swashplate motions in a way which would minimize 

the angular motion of the proprotor control axis in space the 

destabilizing shears could be reduced. 

increasing pylon support stiffness is limited by weight considera- 

tions. 

determines proprotor behavior in space, various means for accom- 

plishing this uncoupling based on the use of blade pitch control 

feedback are possible. 

scheme, termed "swashplate/pylon coupling" will be employed here 

to illustrate the effectiveness of such a technique. 

pylon coupling 

arrangement whereby the swashplate angular displacement relative 

to the mast during oscillatory motions of the pylon is opposite 

to that of the pylon tilt. 

If the proprotor could be uncoupled 

The direct approach of 

Since it is the control plane and not the mast which 

A mechanical displacement uncoupling 

Swashplate/ 

(Refs. 4-2 and 4-12) is based on a mechanical 

Results indicative of the effectiveness of a blade pitch 

control feedback based on longitudinal swashplate/pylon coupling 

are shown in Fig. 4-22. For the coupling ratio used (5 = +1.0) 

the tip-path-plane remains essentially vertically oriented in 

space, 

results in Fig. 4-20a for the case of no coupling. 

stabilizing effects are readily apparent. 

These results are to be compared with the corresponding 

The significant 

If 6 # 0 (or ,  more generally, if o / a  # 1) the effective 
3 8 

control axis is rotated and a swashplate command for a longitudinal 

tilt of the tip-path-plane will also cause the tip-path-plane to 

tilt laterally. Control phasing is incorporated into the 

d 
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swashplate/pylon mechanism t o  phase t h e  swashplate and tip-path- 

plane i n  a manner which will eliminate t h i s  cross-coupling between 

longitudinal and l a t e r a l  tip-path-plane motions i n  a given f l i g h t  

condition. This phasing i s  accomplished by adjusting the  control  

linkages such that the  swashplate control inputs t o  the  p i tch  

horns appear on the blades at an azimuth posit ion more retarded or  

advanced than the swashplate tilt, which i s  the source of the 

control def lect ion,  depending on whether w /Q i s  greater  than 

o r  l e s s  than one. 
8 

The effectiveness of swashplate/pylon coupling 

i s  generally increased by the  use 

a l s o  shows the results of using a 

i n  conjunction with 5 = +1,0, 

of control phasing. Fig. 4-22 

phasing equal t o  the 63 angle 

(h )  Zero Frequency Shear Force Characterist ics During Proprotor 
Feathering 

Whereas a i r c r a f t  r i g i d  body dynamic s t a b i l i t y  considerations 

d i c t a t e  t he  t a i l  requirements fo r  t i l t - r o t o r  operation i n  the  

high-speed cru ise  mode, t a i l  requirements f o r  a folding proprotor 

are dictated by considerations of s t a t i c  s t a b i l i t y .  T h i s  i s  due 

t o  the nature of the response charac te r i s t ics  of the  shear forces 

during the feathering sequence of t rans i t ion .  An indication of the  

magnitude of the H-forces during t h i s  period at an airspeed which 

i s  representative of the  t r ans i t i on  speed i s  given i n  Fig. 4-23. 

No t rans ien t  e f f ec t s  are included. It is  seen t h a t  as the  ro tors  

are stopped the f l i g h t  Condition of minimum s t a t i c  margin i s  

encountered because angle-of-attack s t a b i l i t y  decreases by an 

increasing amount as aH/aam increases. 
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The corresponding results for  a proprotor with i n f i n i t e  flapp- 

ing r e s t r a in t  ( i e . ,  a propeller)  are shown for  comparison. A t  

rpm typical  of proprotor operation (200 t o  400 rpm) aH/aam is  

s m a l l  r e la t ive  t o  that of a propeller because flapping reduces 

l / r e v  air load moments and hence 

i s  large since airload moments are required t o  precess the  prop- 

rotor .  

i s  reversed, aH/aam i s  large and aH/aq is  small. The 

corresponding liz&iting values of aH/aam and aH/aq at 52 = 0 

fo r  the  proprotor and propeller a r e  ident ical  because with 

flapping ident ical ly  zero at 

aH/aam. aH/aq on the  other hand 

The s i tuat ion fo r  a propeller i n  the  same range of rpm 

52 = 0 (see Fig. 4-29) the proprotor 

i s  effect ively a propeller. 

damping also exis t s  for  

63 =-22-1/2' is re lated t o  the flapping associated with passing 

through the flapping natural  frequency (see Fig. 4-29), 

Note tha t  posit ive hub t ranslat ional  

52 = 0.  The peak i n  the curves for  

Proprotor Flapping Characteristics 

Blade flapping is  designed in to  rotor systems t o  re l ieve 

unbalanced moments across the rotor  disc ,  t o  provide a means of 

controll ing the a i r c ra f t  longitudinally and l a t e r d l y  i n  hover and 

low-speed helicopter f l i g h t ,  and t o  re l ieve l / r e v  blade-root 

bending moments i n  the airplane mode, During airplane mode 

operations a flapping proprotor w i l l  develop a flapping angle 

w i t h  respect t o  a plane normal t o  the shaf t  i f  the  a i r c ra f t  is  

pitched o r  yawed, as i n  a maneuver, o r  if operated a t  a steady 

angle of attack o r  s ides l ip ,  as i n  trimmed l g  f l i e h t .  Flapping 
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during maneuvers performed at high advance r a t io s  can lead t o  

especially large flapping angles because at the  large inflow angles 

associated with high advance r a t io s  the perturbation forces 

contributing t o  the precessing moment (A F 

reduced, and the proprotor must f l ap  more t o  generate enough 

moment t o  precess the proprotor. 

i n  Fig, 2-21) are B 

When the mast i s  given an angular displacement with respect 

t o  the freestream velocity,  cyclic variations i n  blade section 

angle of attack a re  produced. 

moments cause the  tip-path-plane t o  precess t o  a new steady-state 

position re la t ive  t o  the mast such that the aerodynamic moments 

The resul t ing l / r e v  flapping 

are  e i ther  balanced by 

are  zero ( i f  yI = 0). 

The value of t h i s  

the hub spring moments ( i f  % # 0)  o r  

st e ady- s t at  e t ip-pat h-pl ane flapping angle 

can be writ ten (Appendix 

where, using Eq. 4-1, 

D )  as a function of w /L? i n  the form B 

X2A, 

Y 

-2 - y  B t an  63 2 3  

(4-9) 

(4-10) 

Under osc i l la tory  conditions the flapping derivatives,  l i k e  the 

force and moment derivatives,  a r e  mathematically complex quantit ies 

having components proportional t o  both pi tch angle and pi tch ra te .  
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Considerations other than flapping per se d i c t a t e  t ha t  some 

means be employed t o  reduce the flapping amplitude during airplane 

mode operations. 

t o  the designer (Ref. 4-7). 

r e s t r a in t ,  hinge o f f se t ,  pitch-flap coupling, and blade pitch 

control feedback mechanisms. 

detuning the blade flapping natural  frequency from l / r e v  according 

t o  Eq. 4-9, thereby removing it from l / r e v  resonance with the cyclic 

airloads due t o  shaf t  angle of atBack. 

these methods wi l l  be presented below. 

computer program ROTDER4 which is based on the analysis developed 

i n  Appendix D and are  presented following the  sign convention 

Several means fo r  reducing flapping axe available 

These include the use of flapping 

The first three reduce flapping by 

The influence of several of 

Results were obtained using 

indicated i n  Fig, 4-14. 

The variation of the t o t a l  flapping derivative 

airspeed* and the effectiveness of 6 i n  reducing 3 

af3/aam w i t h  

flapping are  

brought out i n  Fig. 4-24. If no 63 i s  employed the flapping 

derivative increases rapidly with airspeed. Posit ive 6 i s  seen 

t o  be somewhat more effect ive i n  reducing flapping than negative 
3 

63 

The ef fec ts  of 63 on af3/aam fo r  a fixed airspeed are  

i l l u s t r a t ed  i n  Fig. 4-25. For zero hub r e s t r a in t  the flapping 

curve i s  symmetric about 63 = 0 and both posit ive and negative 

are ju s t  as effect ive i n  reducing flapping. This can also be 63 
seen with reference t o  Eqs. 4-9 and 4-10. However, % i n  

*63 was held fixed as airspeed was increased. 
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conjunct ion with 

t i v e  6 while 3 
effectiveness of 

negative d3  reduces the  effectiveness of nega- 

% i n  conjunction with posit ive d3  increases the  

posit ive 6 3' 
The lef t  result i n  Fig. 4-26 indicates t ha t  large values of 

flapping r e s t r a in t  are quite effective i n  reducing flapping. 

However, as pointed out earlier, blade loads generally l i m i t  t he  

maximum flapping r e s t r a in t  which can be employed i n  practice. 

Pitch-flap coupling (6 ) has a negligible e f fec t  on blade loads and 

can be equally effect ive i n  reducing flapping, as reference t o  the  

result i n  the  r ight  half of Fig. 4-26 w i l l  verify.  

3 

The tip-path-plane derivatives corresponding t o  Fig. 4-26 are 

given i n  Fig. 4-27 as a function of t he  flapping natural  frequency. 

The sign of the longitudinal tip-path-plane derivative 

i s  constant w i t h  

the  top for  a nose-up pitch at t i tude.  

the l a t e r a l  flapping derivative 8b,/aam occurs at a flapping 

frequency of l / rev.  

path-plane i s  flapped l a t e r a l l y  outboard, away from the  wing leading 

edge while for  

inboard toward the  wing leading edge. Since l g  trimmed cruise 

f l i gh t  w i l l  r esu l t  i n  some posit ive mast angle of attack, wing/rotor 

3/rev aerodynamic interference and attendant vibrations are mini- 

mized i f  the tip-path-plane f laps  away fsomthe wing leading edge 

(assuming cyclic pitch is  not available for  t h i s  purpose). 

basis, i f  

aa1/aarn 

w /52  such tha t  the  rotor  disc i s  flapped aft at  B 
A reversal  i n  the  sign of 

As t he  sketches indicate,  below l / r e v  the  t ip -  

wg/Q > l / r ev  the  tip-path-plane f laps  l a t e r a l l y  

On t h i s  

w / 5 2  > 1 t he  proprotors should turn inboasd-down, and B 
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i f  w /Q < 1, inboard-up. 

increased i f  w /SI < 1 and 
B 

B 

The effect ive dihedral is also 

the  direction of rotat ion is inboard-up. 

Note that  as w /SI i s  increased both aal/aam and ab,/aam B 
approach zero, as they should for  t he  l imit ing case of a propeller. 

The frequency response character is t ics  of the tip-path-plane 

flapping derivatives are i l l u s t r a t ed  i n  Fig. 4-28. 

frequency is  increased from zero the  magnitude and phase of the  

derivatives vary considerably. 

the response curves occur at the  fixed system flapping mode frequen- 

cies.  A t  high pylon frequencies abl/aam approaches zero and 

aa,/aam approaches the  negative of t he  pylon pi tch angle. A s  

pointed out earlier t h i s  is  a consequence of t he  pylon osci l la t ing 

too fast fo r  t he  rotor  t o  respond and the  tip-path-plane remains 

essent ia l ly  fixed i n  space. Both aa,./aq and ab,/aq approach 

zero w i t h  increasing frequency. 

As pylon pi tch 

The cres t s  and troughs evident i n  

The e f fec t  of employing a swashplate/pylon coupling r a t i o  of 

+1.0 i n  conjunction with a control phasing equal t o  the  

are included i n  Fig. 4-28 for  the  case of zero pylon pi tch 

frequency. 

the  pi tch angle indicating t h a t  t he  tip-path-plane is  ver t ica l ly  

oriented i n  space. 

lateral flapping. 

63 angle 

aal/aam is seen t o  be about equal t o  the  negative of 

abl/aam is almost zero so there  i s  l i t t l e  

The flapping behavior of a proprotor at  low rpm, such as tha t  

which might be experienced during *he feathering sequence of 

t rans i t ion  for a folding proprotor a i r c r a f t ,  consti tutes an impor- 
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t a n t  design consideration. For w /Q = 1.0, Eq. 4-9 becomes B 

(4-11) 

As the proprotor slows down the  inflow angle increases and flapping 

sens i t i v i ty  t o  changes i n  shaft angle of a t tack  increases rapidly 

i n  accordance w i t h  Eq. 4-11. Fig. 4-29 gives an indication of the  

flapping sens i t i v i ty  t o  angle of a t tack  as a function of ro tor  rpm 

f o r  three values of 6 Steady-state values a re  given, The peaks 

i n  the  response curves occur when the  rotor  rpm is  i n  resonance w i t h  

the  blade flapping natural  frequency, the maximum amplitudes being 

determined by the  amount of f l a p  damping. 

3' 
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TABLE 4-1 

MODEL 266 DESIGN PARAMETERS 

WEIGh'TS 
Design Gross Weight - 
Payload 
VTOL Overload Gross 
STOL Overload Gross 

PROPROTOR SYSTEM 

Direction of Rotation 
Diameter 
Chord 
Number Blades/Proprotor 
Disc Loading (Hover, DGW) 
Solidity 
RPM Schedule 

Helicopter Mode 
Conversion Mode 
Airplane Mode 

Lock Number 
Pitch-Flap Coupling ( d3) 

Maximum Flapping Angle 
Blade Aerodynamic Twist 
Longitudinal Hub Restraint 
Lateral Hub Restraint 

WING SYSTEM 
Spa 
Taper Ratio (c,/ct) 
Airfoil Section 

Root Chord 
Tip Chord 

Wing Loading (DGW) 
Aspect Ratio 
Forward Sweep (1/4 chord) 

DESIGN FACTORS (DGW) 
Airspeed (knots) 

Helicopter 
Conversion 
Airplane 

Lhit Load Factor 
Helicopter 
Conversion 
Airplane 

28000 lb 
6600 lb 
35000 lb 
40000 lb 

Inboard Up 
38.5 ft 
1.92 ft 

3 
12.0 lb/ft2 

095 

387-408 rpm 
298-382 r p m  
238-298 rpm 
4.54 

Max -22.5' 
Mia -180 
+ 9.50 

1500 ft-lb/deg 
250 f t-lb/deg 

33.50 

49.6 ft 
1.1 

NACA 64A223 
NACA 641219 
73.3 lb/ft 
6.43 
6.20 

vC vL 
160 184 
200 230 
360 414 
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TABLE 4-2 

PHYSICAL PARAMETERS EMPLOYED IN TRENI) STUDIES 

63 
Pylon rKpitch 

and 

43.8 slugs 
87.5 slugs 
791 sl~g-ft 2 

2 580 slug-ft 
6.92 ft+ 

2.60 ft 

1.10 ft  

19.25 ft 

O0 

1.92 ft 
.00238 .slug-ft 3+ 
5.73 
0.0 

1 .0  

o.o* 
0°* 

Varied 1 
+Unless noted otherwise 
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KH = 20,000 ft-lb/rad 

&2 =298 rpm 
63 = - 2 2  1/2O 

g = 0.0 
g = .04 

Unstable 

I I I I J 
200 300 4 00 500 
Airspeed - knots 

100 

Figure 4-1.- Effect of pylon pitch stiffness on s tabi l i ty .  
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- = 20,000 ft-lb/rad 
63 = -22 1/2O 
51 = 298 rpm 
Structural fre uencies 

(uncoupled 7 
Wpitch/51 = .80 

g = o  
g = .04 ---- 

a 

- 
Stable region 

I 
I 
I 
1 
I NO pylon yaw 
I freedom 
I 
I 
1 
I 

Representative section 
aerodynamics (g = 0) 

e . 6 5 ~  
A .70R 
rn .75R 

I I I I 1 
200 3 00 400 500 100 
Airspeed - knots 

Figure 4-2.- Effect of pylon yaw stiffness on stability. 
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KH = 20,000 ft-lb/rad 
b3 = -22 1/2O 

= 298rpm 

(uncoupled) 
Structural frequencies 

w / s 2  = .80 
1 pitch 

Wyaw/Wpitch 
g =  0 

-e-- g 5: .04 

Stable region 

-- 
I I I I I 

500 400 0 100 200 300 
Airspeed - knots 

Figure 4-3.- Effect of wing vertical bending s t i f fness  on s tabi l i ty .  
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KH = 20,000 ft-lb/rad 

51 = 298 rpm 
Structural frequencies (uncoupled) 

63 = -22 l/2O 

Mach effects - 
included 

Stable region 

1 

I I I I J 
0 100 200 300 400 500 

Airspeed - knots 

Figure 4-4.- Effect of wing chordwise s t i f fness  on s tabi l i ty .  
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Figure 4-6.- Effect of  blade flapping natural frequency on proprotor/ 
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n = 298 rpm 

g = 0.005 
Structural frequencies 

13 = 0 

(Uncoupled) 

upitch/i2 = 0.80 
w p p =  1.00 

W yaw/wpitch = 2'24 

a +  w Flapping 7 
Stable 

L 
Pylon yaw 

200 knot, 

300 < 
400 

i-2 - w Flapping (off scale) P I I 
16 12 8 4 

- 

3 

Unstable 

; 
-4 -8 -1 2 

Damping -percent critical 

Figure 4-7.- Root locus for four degree-of-freedom proprotor/pylon 
system (wg/S2 = 1.00). 
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D = 298 rpm 

Structural frequencies 
(Uncoupled) 

w /a = 1.00 B 
Wpitch/D = -80 
fd / w  itch = 2-24 Yaw 

beam w /i = .36 

Pylon yaw 

Pylon pitch t 

Stable 

200 knGbo 
300 < 

400 - 51 Flapping (off scale) 

Unstable 

Wine: beam 
_____)_c 

500 

L I I I I I I I 
16 12 8 4 0 -4 -8 -12 

Damping - percent critical 

Figure 4-9.- Root lcous for five degree-of-freedom proprotor/pylon 
system (w /52 = 1.00). 6 
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- -  - -  e- - - - - 
w + D Flapping 

200 knots 

Pylon pitch 

Stable 

w p  - 62 Flapping (off scale) - 
I I I 

10 8 6 4 2 

Damping - percent critical 

?- 

Unstable 

- 
-2 -4 

Figure 4-10.- Root locus for five degree-of-freedom proprotor/pylon 
system (w /Q = 1.10). 
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Pylon yaw 

Pylon pitch 

Stable 

Wing beam 
4 V h - - a 

3 

Unstable 

1 

ws - i2 Flapping (off scale) 

I I I I 
8 6 4 2 0 -2 -4 10 

Damping -percent critical 

Figure 4-11. - Root locus for five degree-of-freedom proprotor/pylon 
system (w /52 = 1.23). B 
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Figure 4-12 - Root locus for five degree-of-freedom proprotor/pylon 
system (wg/Q = 1.78). 
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Figure 4-13.- Effect of flapping frequency on stability of f ive 
degree-of -f reedom proprotor/pylon system. 
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51 = 200 rpm 
51 = 300 rpm 
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Figure 4-15.- Continued. 
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Figure 4-15.- Concluded. 
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Figure 4-16.- Effect of airspeed on frequency response of 
shear force and moment derivatives. 
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Figure 4-17.- Effect of 63 on frequency response of 
normal force and pitching moment derivatives. 
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KH = O  
f2 = 238 rpm 
V = 350 knots 
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--- G3 = +22 1/2O (W, /Q = 1 2) 
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1 1  

I \ 
\ - Stabilizing ' t  \ 

I I I 
1 2 3 

Pylon pitch frequency cycles/rev 

(b) Normal force due t o  p i t ch  rate. 

Figure 4-17. - Continued. 
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Figure 4-19.- Variation of zero frequency shear force 
and moment derivatives with hub restraint. 
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Hub restraint KH -ft-lb/rad 

(c )  Pitching moment 

Figure 4-19. - Continued. 
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= 238 rpm 
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Figure 4-20.- Effect of shaft length on frequency response 
of proprotor and propeller force and moment 
derivatives. 
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Figure 4-21.- Effect of altitude on zero frequency normal 
force derivatives. 
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Figure 4-23.- Variation of zero frequency normal force 
derivative with rotor rpm. 

d 

I 



247 

6 

5 

4 
M 
Q) 

55 a, 

CD e F 3  

a 
2 

cg 

2 

1 

0 

G? = 238 rpm 
KH= 20000 ft-lb/rad 

I I I I I 
100 200 300 400 500 

Airspeed - Knots 

Figure 4-24 .- Variation of t o t a l  blade flapping derivative 
with airspeed. 



248 

-40 - 20. Q +2Q +40 
63 - degrees 

Figure 4-25.- Effect of 6 on blade flapping. 3 

nl 

* 



3 c: lo" 

al a 
03 

P I  
P 

I 

\o cu 
I 

3 

d 



-3 

- 2  

-1 

-2  

-1 

0 

1 

2 

v = 350 knots 

52 
51 = 238 rpm 

- 

- 

I 
1 2 

op/Q - cycles/rev 

I 1 
1 2 

w p / 0  - cycles/rev 

r 

Figure 4-27. - Tip-path-plane flapping derivative variation 
with blade flapping frequency. 

d 



251 

I I 

cu 7-l 
I I 

- I I - 
l-l cu m 

m 

d 

A 



I 

I 

1 

N 

I 
a3 
(u 
i 
f 

d 



25 3 

i 
i 

\ 

\ \ 
\ \ 

KH = 80,000 ft-lb/rad 
V = 150 knots 

G 3 =  0 
63 = +22 1/2O 

--- 63 = -22 1/2O 

----- 

0 

Proprotor speed rpm 

Figure 4-29.- Variation of steady-state flapping 
derivative with ro tor  rpm. 

d 



CHAPTER 5 

MODEL TESTS AND CORRELATIONS 

Introduction 

The experimental portion of a generalized aeroelast ic  research 

program related t o  V/STOL dynamics w a s  formally i n i t i a t e d  i n  August 

1968 when, i n  response t o  a request by NASA Langley Research Center, 

the U. S. Army Aviation Materials Laboratories (AVLABS) transferred 

t o  Langley a 0.1333-scale semi-span, dynamic aeroelast ic  model of 

the B e l l  Helicopter Company Model 266 t i l t - ro to r .  This model w a s  

or iginal ly  designed and bui l t  by B e l l  under Army contract i n  

support of research pertaining t o  the exploratory def ini t ion phase 

of the Axmy Composite Aircraft  Program. The ava i lab i l i ty  of t h i s  

model t o  Langley, i t s  s u i t a b i l i t y  fo r  general aeroelast ic  research 

and the need for  additional studies t o  fur ther  define the  aeroelast ic  

character is t ics  of proprotor-type a i r c r a f t  subsequently led  t o  a 

jo in t  NASA/Bell tes t  program i n  September 1968, 

The model, as mounted i n  the  Langley transonic dynamics tunnel 

for  this investigation, is shown i n  Figs. 5-1 and 5-2. Although the 

model w a s  not designed fo r  extensive parametric variations,  i n  that 

it represents a specif ic  design, it did permit a f a i r l y  divers i f ied 

t e s t  program. Objectives established for  t h i s  program included the 

determination of the following items: 

- The influence of hub r e s t r a i n t ,  pylon yaw support s t i f fnes s ,  
rotor  rpm, and wing degrees of freedom on proprotor/pylon 
s t a b i l i t y  

- Blade loads and motions i n  the helicopter,  conversion, and 

d 
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airplane modes of f l i g h t  

- The ef fec t  of highly twisted blades on autorotational 
performance 

- Tkirust e f f ec t s  on wing mode damping 

- Proprotor/pylon/wing frequency response charac te r i s t ics  
during simulated v e r t i c a l  sinusoidal gust exci ta t ion 

- Pylon s t a t i c  divergence 

- Vibration levels  i n  all f l i g h t  modes 

- Preliminary investigation of ro tor  i n f l i gh t  stopping and 
s t a r t i ng ,  simulating one phase of t r ans i t i on  of a folding 
propro t o r  

The majority of t h e  above objectives were met. Some of the  

pr incipal  r e su l t s  of t h i s  test  program were i n i t i a l l y  presented at 

the A i r  Force V/STOL Technology and Planning Conference i n  

September 1969 (Ref. 5-1). 

In te res t  i n  the t i l t ing-folding variant of the  t i l t - r o t o r  

concept l e d  t o  a subsequent j o in t  NASA/Bell test  program i n  the 

Langley transonic dynamics tunnel t o  invest igate  any poten t ia l  

problem areas associated w i t h  a i r c r a f t  of t h i s  type. This invest i -  

gation, conducted i n  January 1970, u t i l i zed  essent ia l ly  the  same 

model employed i n  the  i n i t i a l  study but modified t o  incorporate a 

f a s t e r  and more powerful col lect ive dr ive motor t o  permit rapid 

feathering and unfeathering of  the proprotor and a fold-hinge 

f i t t i n g  between the blade grips and the  yoke fo r  the  folding por- 

t i o n  of t he  t e s t .  

t o  investigate s t a b i l i t y  at l o w  (including zero) rpm, during ro to r  

The main objectives of t h i s  t e s t  program were 

stopping and s t a r t i ng ,  and during blade folding and t o  assess the  

e f f ec t  of various r a t e s  of feathering and unfeathering on t h e  



overall  dynamic response of the system. Fig. 5-3 shows the model 

mounted i n  the transonic dynamics tunnel fo r  the rotat ing portion of 

t h i s  study. 

t ions  i n  Figs, 5-4 and 5-5. Although the  model was not scaled t o  

any specific folding proprotor design i ts  dynamic and aeroelast ic  

character is t ics  were such tha t  it was  representative of a typical  

gimbaled folding proprotor design. 

program were m e t .  

apparently new form of the f l u t t e r  phenomenon involving the rotor  

a t  zero and low rpm. Because of i t s  novel character the effect  of 

various system parameters on t h i s  i n s t a b i l i t y  was established both 

experimentally and analytically.  

The model i s  shown i n  two pa r t i a l ly  folded configura- 

All objectives of the tes t  

The experimental investigation ident i f ied an 

The majority of the experimental r e su l t s  t o  be reported i n  

t h i s  chapter were obtained during the  aforementioned jo in t  NASAf 

B e l l  s tudies of the 0.1333-scale semi-span model of the  Bell 

Model 266 t i l t - r o t o r  i n  the Langley transonic dynamics tunnel. 

Although emphasis will be placed on proprotor/pylon s t a b i l i t y  

selected r e su l t s  i n  the areas of gust response, thrust  e f fec ts  and 

blade flapping are a l so  included." A t  t h i s  point the  author would 

l i k e  t o  acknowledge the  test  support contributed by B e l l  i n  these 

cooperative effor ts .  Specifically,  t h i s  support included: 

measurement of model physical parameters, model build-up, 

k 
The r e su l t s  of' the January 1970 test  pertaining t o  the  dynamic 

response character is t ics  during feathering and unfeathering and 
s t a b i l i t y  during blade folding may be found i n  R e f .  5-2. 
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instrumentation hook-up, cal ibrat ions,  and shake tes t ing.  The 

author, although only superf ic ia l ly  involved i n  these aspects, 

assumes responsibi l i ty  for  the  experimental r e su l t s  shown. To 

provide additional data fo r  correlation, selected experimental 

resu l t s  pertaining t o  the B e l l  Model 300 ti l t-proprotor design are 

a l so  included. Analytical-experimental correlation i s  shown where 

possible using the  proprotor analyses developed i n  t h i s  disserta- 

t ion.  Selected analyt ical  studies f o r  several configurations not 

tes ted are  additionally presented t o  i so l a t e  or  point out the 

effect  of various parameters on s t ab i l i t y .  Both these studies and 

the  experimental. results i n  essence const i tute  a continuation of 

the analyt ical  studies of Chapter 4 since they complement and 

extend the  results therein.  

In each case, unless otherwise noted, both experimental and 

analyt ical  r e su l t s  are for t he  pylon fu l ly  converted forward in to  

the airplane node of operation and the  rotor  i n  a windmilling 

(non-thrusting ) condition. 

unless s ta ted otherwise. It should be noted tha t  the measured 

stability of the model can not be interpreted d i rec t ly  as represent- 

ing the  s t a b i l i t y  of the Model 266 design since compressibility was  

not scaled and free-fl ight e f fec ts  were not present. The 

principal benefit  of the model tests i s  t o  generate parametric data 

for  correlation with analysis and t o  experimentally es tabl ish 

the  effect  of system parameters on s t a b i l i t y  and dynamic response. 

Equivalent full-scale values are given 

L 

d 

1 



For completeness, basic descriptive information pertaining t o  

the 0.1333-scale model, the character is t ic  features of t he  wind- 

tunnel f a c i l i t y ,  and a brief account of the  t e s t ing  technique a re  

given below before presenting the results of these investigations, 

Description of Model 

(a) Design and Construction 

The 0.1333-scale model as mounted i n  the Langley transonic 

dynamics tunnel was shown previously i n  Fig. 5-1. Only the  

proprotor, pylon, and wing are aeroelast ical ly  and dynamically 

scaled, the  fuselage maintaining only the scaled external 

aerodynamic shape. 

mount which i s  effect ively r i g i d ,  i t s  lowest frequency being well 

The model is  attached a t  i t s  wing root t o  a 

above any important e l a s t i c  mode frequency of the model, 

the mounting arrangement i s  not tha t  normally employed for t es t ing  

Note tha t  

semi-span models i n  that the model, being mounted away from the 

tunnel w a l l ,  lacks a re f lec t ion  plane through the ve r t i ca l  plane of 

symmetry of the fuselage, T h i s  arrangement was dictated mainly 

by the requirement of placing the rotor i n  the center of the 

tunnel, Nevertheless, fo r  the  proprotor-related dynamic phenomena 

of i n t e re s t  i n  these studies a mounting arrangement of t h i s  type 

has been established t o  be quite satisfactory*. 

* 
This was experimentally substantiated during the January 1970 test 

program. F lu t te r  speeds with and without a re f lec t ion  plane 
(Fig. 5-6) were essent ia l ly  the  same. 

d 

ir 
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Simulation of the distributed wing beamwise, chordwise, and 

torsional stiffness is provided by means of a hollow aluminum beam- 

type spar having chordwise flanges. The spar, which lies along the 

calculated elastic axis of the full-scale aircraft, has segmented, 

box-like, non-structural aerodynamic fairings which provide the 

spanwise distribution of airfoil contour. 

of balsa end ribs and a covering of thin balsa planking and paper. 

Single point contact of these sections with the wing spar through 

an X-frame arrangement within the fairings ensure concentration 

of the wing elastic characteristics in the spar. 

surface continuity, the space between these sections is filled by 

strips of foam rubber. The wing spar and aerodynamic fairings are 

ballasted to represent a 15-percent fuel wing weight distribution. 

Additional ballast in the form of lead weights can be distributed 

along the wing spar to simulate an increased fuel weight distribu- 

tion or to maintain the weight distribution when testing is done 

with the wing fairings removed. 

These segments consist 

To provide 

The pylon is attached to the wing spar with a tapered conver- 

sion spindle at the rear of the spar and locked to the wing tip in 

pitch at the front of the spar. An ad3ustable yaw flexibility was 

provided (September 1968 test) in the form of an assembly of 

helicoidal springs housed in a box-like structure ahead of the wing 

spar between the pylon and the wing tip. 

assembly which were simulated include the proprotor mast and bear- 

ing assembly, pitch-flap coupling, and an adjustable hub 

(flapping) restraint. 

Items within the pylon 

Some of the details of the pylon for the 

d 
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model oriented as shown i n  Fig. 5-1 are i l l u s t r a t ed  i n  Fig. 5-7 

which shows a close-up view of the pylon/hub area with i t s  fa i r ings  

removed. 

yaw re s t r a in t  assembly are vis ible .  

scaled and can be taken t o  be effect ively r ig id .  

and i n e r t i a  is however scaled. 

A portion of the beam spar construction and the  adjustable 

The pylon i s  not e l a s t i ca l ly  

Its overal l  mss 

Proprotor blade beanrwise and chordwise s t i f fnes s  dis t r ibut ions 

are  scaled from the center of rotat ion t o  the blade t i p .  

tors ional  s t i f fness  i e r  only appraximately scaled. However, since 

the  blades are very s t i f f  tors ional ly ,  s m a l l  deviations from the 

design tors ional  s t i f fnes s  dis t r ibut ion a re  taken t o  be of secondary 

importance. 

Blade 

The proprotor blades are of constant chord and consist  of a 

negatively twisted (-27.7') aluminum spar covered with f iberglass  

skin. Expanded foam i s  used t o  maintain the blade contour. Lead 

weights are  bonded t o  the spar t o  obtain the proper weight and 

s t a t i c  unbalance. 

weight w a s  added near the  t i p  of each blade. 

weight dis t r ibut ion toward the  blade t i p s  leading t o  blade flapping 

moments of i n e r t i a  which were about 14-percent higher than the 

taxget scaled iner t ia .  

and l i e s  d o n g  the blade quarter-chord l i ne .  

attached t o  a s ta in less  steel yoke/spindle assembly which i s  i n  

turn attached t o  the mast through a gimbal housed within the yoke. 

Blade feathering freedom about the spindle i s  provided by two 

To tune the blade inplane frequency a lead 

This biased the  

The blade pitch-change axis is  preconed 3' 

The blades are 

d 
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needle bearings located i n  the  blade g r ip  assembly. 

s t r ap  passing through the  blade g r ip  and spindle ca r r i e s  the  blade 

steady centr i fugal  force and feathering moment. 

f l e x i b i l i t y  about the  blade p i tch  change axis is  not scaled but i s  

suf f ic ien t ly  s t i f f  so that  the  net blade p i tch  s t i f f n e s s  remains 

high enough t o  preclude any blade tors iona l  osc i l la t ions  of 

consequence, that is, blade p i tch  enters  primarily as a kinematic 

freedom. 

p i tch  l inks  t o  a p l a t e  located above the  hub, which is t rans la ted  

pa ra l l e l  t o  t he  ro tor  shaf t  t o  change blade co l lec t ive  pitch.  This  

control system, shown i n  Fig, 5-7, w a s  used fo r  a l l  t e s t i n g  done i n  

the  airplane mode. 

by adjusting the  mean of t he  col lect ive p i tch  range by reposit ioning 

the  pi tch horns on the  blade grips.  

and conversion modes a d i f fe ren t  control system, having both 

co l lec t ive  and cycl ic  p i tch  capabi l i ty ,  w a s  used. 

system i s  shown i n  Fig. 5-8. 

A wire wound 

Control system 

Trai l ing edge p i tch  horns are linked by convectional 

A wide range of co l lec t ive  p i tch  was available 

For t e s t ing  i n  the  helicopter 

This  control 

A 3 HP, variable frequency, constant speed, water cooled 

e l e c t r i c  motor housed within the cavity of the fuselage f a i r ing  

provided a r e l a t i v e  wide range of scaled values f o r  the  proprstor 

th rus t  when operating i n  a powered configuration. 

t ransferred t o  a reduction gear box i n  the  pylon through a 

tors iona l ly  scaled driveshaf't supported along the  t r a i l i n g  edge of 

the  wing spar by bearing hangers. 

a t  t he  coupling near the  pylon may be seen i n  Fig. 5-7. 

Power i s  

A portion of t h i s  dr ive shaft 
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The model for the rotating portion of the January 1970 test 

differed somewhat from that described above for the September 1968 

test. To provide for the large range of collective pitch required 

for remote feathering and unfeathering of the rotor, the walking 

beam arrangement shown in Fig. 5-9 was employed. 

and inertia contributed by this control system modification was 

compensated for by the removal of the simulated engine locbted 

below the transmission (Fig. 5-8). This adjustment maintained 

essentially the same pylon weight and inertia as in the original 

configuration. Another modification was the replacement of the 

variable yaw restraint assembly (Fig. 5-7) by the permanent yaw 

lock-out arrangement shown in Fig. 5-9. 

The added weight 

Simulation of the mass and stiffness properties in the manner 

indicated above ensured that a l l  important modes and frequencies 

of vibration on a per-rev basis of the full-scale proprotor/pylon/ 

wing system would be preserved as nearly as possible. 

Table 5-1 are the target and actual natural frequencies for several 

of the lower modes of the model. 

(b) Physical Properties 

Shown in 

The basic pylon/wing configuration for the September 1968 

test consisted of a simulated 100% fuel wing weight distribution 

with the wing aerodynamic fairings removed and the pylon yaw 

degree of freedom locked out. 

Since the wing mass is distributed and small in comparison to 

the combined mass of the rotor and pylon, for  analysis purposes 

d 

0 
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it i s  suff ic ient  t o  account for  t h e  wing motions i n  the guise of 

wing t i p  displacements i n  the fundamental modes of motion, as 

discussed i n  Chapter 3. 

stiffness to be represented" by equivalent concentrated masses , 
springs, and dampers. Wing t i p  measured spring rates were refer- 

enced t o  the pylon/conversion axis intersection which was taken t o  

be t h e  location of the effective pi tch axis of the pylon A shake 

t e s t  w i t h  the blades replaced by an equivalent lead weight 

established the basic modes and frequencies of i n t e re s t ,  

mass and i n e r t i a  properties,  i n  conjunction with the wing effect ive 

mass and i n e r t i a  based on the fundamental wing modes and the known 

wing mass and i n e r t i a  dis t r ibut ions,  were used t o  calculate the  

coupled modes and frequencies of the system. The measured spring 

r a t e s  were then adjusted t o  bring the  calculated $requencies in to  

agreement with the measured shake tes t  frequencies. 

This allows the wing distributed mass and 

Measured 

Damping corresponding t o  each of the fundamental modes w a s  

established by "plucking" the model i n  the beemwise, chordwise, 

tors ional ,  and pylon yaw degrees of freedom and recording the 

subsequent decaying osc i l la t ion  i n  each degree of freedom, 

resul t ing t i m e  h i s tor ies  were used t o  determine 

(as a check on the shake test r e su l t s )  and damping, the damping 

as  a fract ion of c r i t i c a l  damping being obtained from the  re la t ion  

5 = .ll/I'?l/2, where N 

half amplitude. 

essent ia l ly  the same as those from the shake t e s t .  

The 

the frequencies 

i s  the number of cycles fo r  decay t o  

The frequencies established by "plucking" were 
1/2 

Hence, i n  
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addition to determining the demping in each of the fundamental 

modes by "plucking", the modal frequencies were also taken to be 

those obtained by this means of excitation. 

damping were checked several. times for each series of runs on a 

given configuration, The damping values used in the analytical 

correlations actually represent an average of all the measured 

values in each degree of freedom. Since the damping values so 

measured are for a coupled motion it is believed that they are 

more representative of the actual damping in the system than if 

all degrees of freedom except the one in question were locked out 

and the resulting one degree-of-freedom damping measured. 

The frequency and 

The basic pylon/wing configuration for the January 1970 test 

consisted of' a 15% fuel wing weight distribution with the wing 

aerodynamic fairings installed and the pylon yaw degree of freedom 

locked out. 

essentially unchanged since the increased mass and inertia resulting 

from the control system modifications were fairly well accounted 

for by removing the simulated engine weight. For analysis purposes 

the differences were neglected. 

The pylon mass and inertia characteristics were 

A summary of the model physical characteristics employed in 

the correlation studies is given in Table 5-2. 

restraint and the removal of the lead weights from along the wing 

spar are believed to be the cause for the reduced levels of 

damping in the January 1970 test. 

value of wing effective mass in this test is a consequence of the 

reduced fuel weight distribution, 

The new yaw 

The significahtly reduced 

With the simulated engine 
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removed the ve r t i ca l  offset  of the pylon center of gravity from the  

wing chord plane i s  negligible and has been set t o  zero. 

fue l  weight dis t r ibut ions,  the  wing effect ive masses and ine r t i a s  

i n  the wing degrees of freedom other than vertical. bending are 

negligible compared t o  the  pylon weight and i n e r t i a  and hence have 

been neglected. 

( c )  Instrumentation 

For both 

Instrumentation employed t o  record model response cms i s t ed  of 

wire resistance s t r a i n  gages, accelerometers, and posit ion potentio- 

meters. 

15% span posit ion and chordwise bending gages at 28% span. 

beamwise and chordwise bending moments were measured a t  the 35% 

blade radius on one blade, 

measured i n  the rotat ing system by means of a strain-gaged canti- 

lever member mounted on the mast and connected by a spring t o  the 

hub gimbal ring. Mast torque was monitored by the output from 

s t r a in  gages on the mast and used f o r  se t t ing  the  rotor  thrust  

levels  when operating with power. Pitch l i n k  axial loach were 

monitored t o  provide an indication of blade root tors ional  bending 

moments. 

strain-gaged cantilever member. 

recorded by f ive  accelerometers mounted on the pylon: 

oriented t o  give pylon forward and aft ve r t i ca l  acceleration, 

two t o  give pylon forward and aft  l a t e r a l  acceleration, and one 

to give fore  and a f t  acceleration. 

Wing beamwise and tors ion s t r a i n  gages were located at 

Blade 

Flapping r e l a t ive  t o  the  m a s t  was 

Pylon yaw motion (when unlocked) was srtnsed by a 

Pylon acceleration leve ls  were 

two 

Rotor rpm was  indicated 



266 

di rec t ly  on a tachometer driven by the signal from a magnetic 

pickup. 

were given by another magnetic pickup which pulsed every 90' of 

rotor  rotation. This signal was recorded on the  oscillographs. 

Rotor rpm and the azimuth posit ion of a reference blade 

The pulse corresponding t o  a specif ic  azimuth position of the  

reference blade was la rger  than the others,  This feature was used 

mainly for blade balancing purposes. 

(Fig. 5-2) which gave readings proportional t o  the angular rotat ion.  

A flow direction transmitter 

of the balsa vane was employed for measuring the gust-induced 

angle of attack.% Model angle of attack and pylon tilt angle were 

hand adjustable. Remote e l ec t r i ca l  o r  electromechanical controls 

were used t o  control col lect ive and cyclic pi tch remotely from 

the control room. Rotor torque (and hence th rus t )  levels  were s e t  

by means of mast torque cal ibrat ion curves. 

cyclic control posit ions and mast torque were indicated on the 

Collective and 

model operators control console. 

A t ransient  external excitation could be applied t o  the  

model by means of two lightweight cables attached t o  the model and 

routed t o  the control room. A ver t i ca l  cable on the conversion 

axis near the pylon (Figs. 5-7 and 5-9) provided the  means for  wing 

beamwise (ver t ica l )  excitation while a horizontal cable oriented 

pa ra l l e l  with the airstream and downstream of the  pylon (Fig. 5-6) 

Y n 

The flow direction transmitter was mounted on an effect ively 
r ig id  boom support. 
the  lateral r i g i d i t y  of the boom but was not ins ta l led  a t  the 
t i n e  the picture  (Fig. 5-2) was  taken. 

A lateral rod member was added t o  increase 
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was used t o  provide chordwise (fore and a f t )  excitation. Both 

cables could be used t o  r e s t r a in  the pylon motion i n  the event of 

an ins tab i l i ty .  

Data from the rotat ing system were brought out through the 

transmission by a slip-ring assembly. 

recorded on direct-readout oscillographs and on magnetic tape,  

permanent photographic record was made of all f l u t t e r  points and 

response phenomena of in te res t .  

( d )  Scaling Considerations 

A l l  data from the  model were 

A 

The current modeling state-of-the-art is such t h a t  the 

s imilar i ty  parameters which must be simultaneously sa t i s f i ed  t o  

maintain complete similitude ( R e f .  5-3) can not aJ-1 be sa t i s f i ed  

i n  practice and the majority of the simili tude requirements must be 

relaxed. Scaling was  thus dictated by the minimum conditions 

imposed by the s imi la r i ty  laws which had t o  be satisfied t o  insure 

a proper dynamic and aeroelast ic  simulation of the  important 

proprotor-related phenomena.* A brief summary of some of these 

considerations i s  given below, 

Synonymous w i t h  the  need fo r  a dynamic end aeroelastic 

representation of the full-scale a i r c ra f t  ( ie. ,  a f l u t t e r  model) 

a re  the requirements fo r  the maintenance of the full-scale 

geometric shape and mass, s t i f fnes s ,  end damping distributions.  

Additionally, the full-scale reduced frequency k and mass-density 

Y 

The reader may f ind the modeling and scaling considerations of 
R e f .  5-4 of in t e re s t  i n  t h i s  regard. 
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r a t i o  

maintained. 

i n  the wind tunnel be interpreted i n  terms of f'ul.1-scale behavior. 

It i s  also desirable t o  preserve the f'ull-scale Mach and Reynolds 

numbers. For low-speed f l u t t e r  models compressibility effects  can 

generally be neglected and the Mach number scaling requirement can 

be relaxed. The Reynolds number requirement was taken t o  be of 

secondary importance i n  this particular case and no attempt was 

made t o  achieve similitude i n  t h i s  parameter. 

often neglected i n  f l u t t e r  modeling since experience has demon- 

strated that Reynolds number effects  generally have a 

negligible effect  on the f l u t t e r  characterist ics of main l i f t i n g  

surfaces. 

p, or the combined parameter V/b  href & , must be 

Only then can the model f l u t t e r  behavior as determined 

This similitude is  

The need t o  maintain full-scale damging distributions i n  the 

various model modes of vibration was obviated by employing 

construction methods and materials which minimized the s t ructural  

damping, thereby leading t o  values less than those which would be 

obtained on the full-scale a i rc raf t .  This insured that the model 

would exhibit conservative values of damping. 

Specific considerations involved i n  the selection of the model 

length, t i m e ,  and mass scaling are given below. 

Length: Wind tunnel s i ze  and w a l l  interference and blockage 

considerations led t o  the selection of a model length 0.1333 t i m e s  

the full-scale length. 
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- Time:  In low-speed tes t ing ,  the velocity scale factor  i s  

generally established by requiring tha t  the available tunnel speed 

represent one or  more f l i gh t  conditions Qf the f'ull-scale a i r c ra f t .  

Although t h i s  consideration permits the selection of a velocity 

scaling of unity,  the convenience realized by having the  model 

s t r a ins  and accelerations equal t o  those on the corresponding 

components of the full-scale a i r c ra f t  suggested tha t  the  hrll-scale 

Froude number be maintained instead. This also insures tha t  the  

s t a t i c  aeroelast ic  behavior i s  simulated, i n  par t icular  the scale 

of aeroelastic deflections under steady gravity loads, which i s  

important for the correct scaling of blade bending loads. 

deflection s imi la r i ty  due t o  aerodynamic, i n e r t i a l ,  and gravity 

loadings i s  maintained. 

t i o n  with the previous requirement of mass-density r a t i o  similitude 

implies that the model operates at the same lift coefficient as  the 

full-scale a i r c ra f t .  

character is t ics  are maintained t h i s  further implies tha t  angles 

are preserved, 

Hence 

The Froude number specification i n  conjunc- 

Assuming tha t  the l i f t  curve-slope 

The velocity scale which preserves the Froude number, i n  

combination w i t h  the selected length scale ,  then determines the 

time and frequency scale  factors  from the requirement that the 

full-scale reduced frequency* be maintained. 

* 
The reduced frequency i s  equivalent t o  the reciprocal of the 

advance r a t i o  . 

, 



- Mass: Since various proprotor dynamic phenomena a re  a 

function of the  r a t i o  of blade aerodynamic forces t o  blade i n e r t i a  

forces (Lock number i n  the parlance of rotary-wing dynamicists) 

proper simulation of the full-scale a i r c r a f t  required preservation 

of t h i s  quantity. 

of the  model and airplane are maintained, the foregoing requirement 

is  equivalent t o  the preservation of the  massdensity r a t i o ,  

maximum dynamic pressure at sea l eve l  was judged t o  be most c r i t i c a l  

from a proprotor s t a b i l i t y  point of view. 

model design point. 

i f  the Reynolds number requirement i s  relaxed the  f l u i d  density 

r a t i o  can be selected on the basis of the density a t  the  a l t i t ude  

of the  design point. 

implied a f l u i d  density scale factor of unity which, i n  conjunction 

w i t h  Lock number s imilar i ty ,  set the mass suale factor.  

Assuming the lift-curve-slope character is t ics  

The 

This established the  

Since f l u i d  density becomes a f r ee  parameter 

Selecting sea-level wind-tunnel conditions 

Using the length, mass, and time scale factors  established 

above, the  required scale factors  fo r  s t i f fnes s ,  mass moment of 

i ne r t i a ,  spring r a t e ,  e tc . ,  were then easi ly  evaluated. 

pertinent scale factors  are  summarized i n  Table 5-3. 

The 

NASA-Langley Transonic Dynamics Tunnel 

The majority of the  experimental investigations t o  be reported 

herein were conducted i n  the  NASA-Langley transonic dynamics 

tunnel (Fig. 5-10) which i s  a continuous flow, single-return, 

variable pressure, slotted-throat tunnel having a t e s t  section 16 

feet square (with cropped corners). The control room and test  



section walls are provided with large windows fo r  close viewing of 

the  model. 

ment of t h i s  tunnel are schematically depicted bn Fig. 5-11. 

Some of the general features of the s t ruc tura l  arrange- 

Although most runs were conducted i n  air under near atmospheric 

conditions a t  Mach numbers less than 0.30, the  tunnel i s  capable 

of operation at stagnation pressures from near vacuum t o  s l i gh t ly  

above atmospheric and of Mach numbers up t o  1.2. 

freon-12 can be used as a test  medium. 

do include one reduced pr&ssure stability run i n  air  t o  simulate 

a l t i t ude  and some flapping derivative data obtained at  reduced 

pressures i n  freon through a Mach number of 0.62. 

operating curves employed i n  f l u t t e r  t e s t ing  are shown i n  Fig. 5-12. 

Either air o r  

The r e su l t s  t o  be presented 

The par t icu lar  

The Langley transonic dynamics tunnel has the  capabili ty fo r  

studying a i r c ra f t  gust response by means of a unique airstream 

osc i l la tor  system. 

of biplane vanes located on the s i C e  w a l l s  of the tunnel entrance 

section. 

linkages t o  produce a nominally sinusoidal vane osc i l la t ion  about a 

mean angle of a t tack of zero. Fig. 5-13 shows the in te r ior  of the 

tunnel, looking downstream toward the t e s t  section from the entrance 

section, and schematically shows the general arrangement of t he  

airstream osc i l l a to r  system. 

o r  180' out of phase t o  produce rPominally sinusoidal ve r t i ca l  

o r  ro l l i ng  gusts,  respectively. 

cross-stream f low components induced by the  t r a i l i n g  vort ices  from 

This system (Fig. 5-13) consists of two s e t s  

The vanes are driven by a hydraulic motor through 

The vanes can be osc i l la ted  inphase 

The gusts are  generated by the  



the  vane t i p s .  

t o  the character is t ics  of t h i s  system may be found i n  Refs. 5-5 and 

Some general descriptive information pertaining 

5-6. 

Test Procedure 

F lu t te r  points were established i n  the  following manner: For 

a given model configuration the windmilling rpm was eet  by remotely 

adjusting the col lect ive pi tch of the  blades and held constant a s  

t h e  tunnel was brought up t o  a low speed. 

excited i n  the wing beamwise and chordwise directions using the  

cable system described earlier and the s t a b i l i t y  of t he  response 

observed visual ly  and recorded on oscillographs. 

velocity was incrementally increased and the  model again excited. 

This procedure was continued u n t i l  a sustained, approximately con- 

s tan t  amplitude osc i l la t ion  (indicating neutral  s t a b i l i t y )  w a s  

observed i n  some mode of motion. The tunnel conditions were then 

recorded as the condition for  f l u t t e r .  

reduced t o  a low value, the  rotor  rpm se t  t o  a new value and the 

above procedure repeated. 

1970 t es t )  were selected t o  avoid l / r e v  and 3/rev resonance with 

the pylon/wigtg and blade natural  frequencies. 

recording the subcr i t ica l  wing beamwise arld chordwise t ransient  

response, steady-state leve ls  of loads, vibration, and blade 

flapping were recorded. 

The model was t ransient ly  

The airstream 

The tunnel velocity was 

Rotor speeds below 238 rpm (January 

In  addition t o  

Thrust e f fec ts  on wing beam and chord mode damping were 

established by holding the tunnel speed and ro tor  rpm constant 

d 
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and incrementally changing the thrus t  by varying the blade collec- 

t i v e  pitch. 

and chord directions and the resulting transient  response recorded, 

A t  each thrus t  l eve l ,  the model was excited i n  the  beam 

The model gust frequency response character is t ics  were obtained 

by holding tunnel speed and rotor  rpm constant and incrementally 

increasing the tunnel osc i l la t ing  vane frequency from zero t o  the  

maximum allowable by the tunnel conditions by means of an e l ec t r i -  

c a l  control system located i n  the tunnel control room. Steady- 

state system response data were taken at each increment of fre- 

quency. 

Flapping derivatives were determined by evduat ing  the slope 

of the curve of flapping angle versus mast angle of a t tack fo r  each 

combination of tunnel speed and rotor  rpm. 

Presentation of Results 

Because of the differences i n  the basic configuration it wa8 

judged tha t  a chronological presentation of the t e s t  results would 

be appropriate, beginning with the September 1968 test and followed 

by the  results of the January 1970 test .  

chronological sequence, some additional results pertaining t o  the 

Bell Model 300 t i l t - ro to r  conclude the presentation. 

(a) September 1968 Test 

Continuing i n  t h i s  

Parametric Study of Proprotor S tab i l i ty :  vaxious system 

parameters a f fec t  proprotor s t a b i l i t y ;  some are s tab i l iz ing  while 

others are destabil izing. 

degree t o  which s t a b i l i t y  can be affected,  and t o  provide a wide 

To provide an indication of t he  r e l a t ive  

d 
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rmge of configurations for  correlation with analysis,  several 

system parameters were varied e i ther  individually o r  i n  conjunction 

w i t h  other parameters and the  leve l  of s t a b i l i t y  established. 

These r e su l t s  are presented and discussed below. 

A baseline s t a b i l i t y  boundary, based on a reference configura- 

t i on ,  was established f i rs t  t o  provide a basis f o r  comparison of 

specific effects .  An indication of the  re la t ive  degree t o  which 

s t a b i l i t y  can be affected can then be ascertained by varying 

selected system parameters away from the baseline configuration, 

The reference configuration consisted of the basic Model 266 

configuration with the pylon yaw degree of freedom locked out and 

the wing aerodynamic fa i r ings  removed, w i t h  lead weights distribu- 

ted along the  wing spar t o  simulate a 100% fuel wing weight 

dis t r ibut ion.  The hub r e s t r a in t  was set t o  zero and the  6 angle 

nominally se t  t o  -22.5'. The s t a b i l i t y  boundary corresponding t o  

t h i s  reference configuration as w e l l  as the changes i n  t h i s  boun- 

dary due t o  several parameter variations are shown i n  Fig. 5-14. 

3 

(1) Altitude - Altitude has a highly s t a b i l i t i n g  e f fec t  on 

proprotor/pylon s t a b i l i t y ,  

quence of the fac t  t ha t  both aH/aa and aH/aq decrease with 

a l t i tude  fo r  pylon pi tch frequencies near the wing e l a s t i c  mode 

frequencies, 

shears is  attained at  progressively higher airspeeds as a l t i t ude  

increases. 

This increased s t a b i l i t y  is a conse- 

m 

This means tha t  a given leve l  of these destabil izing 

( 2 )  Hub Restraint - The s tab i l iz ing  influence of moderate 

flapping r e s t r a in t  was ver i f ied as shown i n  Fig. 5-14. A 
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non-isotropic hub r e s t r a in t  was  employed* having the r a t i o  of 

longitudinal t o  lateral hub flapping r e s t r a in t  equal t o  6.0, 

longitudinal r e s t r a in t  gave an uncoupled longitudinal tip-path- 

plane flapping frequency of 0.27 cycles/rev. 

ing r e s t r a in t  increases the flapping natural  frequency, bringing 

it closer t o  the "optimum" flapping f'requency i n  the sense of 

Young and Lytwyn (Ref. 5-7). 

pylon support s t i f fnes s  requirements are reduced. In R e f .  5-8 

data  a re  presented which show tha t  hinge of fse t  is also 

stabi l iz ing.  

offset  

frequency, the results of R e f .  5-8 substantiate the trend obtained 

here. 

The 

Increasing the flapp- 

T h i s  increases s t a b i l i t y  since the 

Since flapping r e s t r a in t  is equivalent t o  hinge 

as f a r  as their  e f fec ts  on the blade flapping natural  

(3) -lon/Wing Freedom - Although the proprotor/pylon/wing 

system of a t i l t - ro to r  a i r c r a f t  can exhibit various forms of 

in s t ab i l i t y  the i n s t a b i l i t y  encountered with the reference 

configuration was i n  the wing beam mode,** tha t  i s ,  the coupled 

pylon pitch/wing ve r t i ca l  bending mode i n  which the pylon is  

pitching inphase w i t h  the  wing ve r t i ca l  motion at a frequency near 

the fundamental wing beem bending natural  frequency, This motion 

* 
Specifically,  K a l  = 86,000 ft-lb/rad and 

Recall the discussion i n  Chapter 4 regarding the  descriptive 

Kbl = 14,325 ft-lb/rad. 

** 
designations adopted f o r  the coupled pylon/wing modes. 

* 
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waa accompanied by a negligible amount of wing chordwise bending 

and very l i t t l e  rotor flapping re la t ive  t o  space. 

large r a t i o  of pylon yaw t o  pylon pi tch s t i f fnes s  the pylon angular 

motion, although primarily pitch,  did exhibit  some yawing motion 

resul t ing i n  a highly e l l i p t i c a l  forward precession whirl  of the  

pylon/rotor combination. 

and calculated damping and frequency var ia t ion with airspeed f o r  

the  wing beam and chord modes fo r  the reference s t a b i l i t y  boundary 

of Fig. 5-14. 

Damping of other modes was such tha t  no other modes were excited by 

the beamwise and chordwise excitation. A root locus showing the  

behavior of the  flapping modes and pylon/wing modes as a function 

of airspeed for  s1 = 238 r p m  is  given i n  Fig. 5-17. The i n i t i a l  

increase i n  s t a b i l i t y  of the wing beam mode before i n s t a b i l i t y  

occurs i s  associated w i t h  the fac t  t ha t  aH/af& i n i t i a l l y  becomes 

more s tab i l iz ing  with increasing afrspeed (Fig. 4-16a) u n t i l  

3H/3am becomes suf f ic ien t ly  large t o  lower the  pitch frequency t o  

a l eve l  where 3H/aq becomes increasingly destabi l iz ing w i t h  

increasing airspeed. 

modes with increasing airspeed is  caused by the negative spring 

effect  of aH/aam. The computer output corresponding t o  the root 

locus of Fig. 5-17 for  an airspeed of 380 knots ( ju s t  beyond the  

f l u t t e r  speed) i s  given i n  Table 5-4. 

of the damping contributed by the  proprotor i s  given i n  Fig. 5-18 

which shows the  damping of t he  wing beam mode versus airspeed for  

Because of the  

Figs. 5-15 and 5-16 show the measured 

Results are  shown through the f l u t t e r  point. 

The decrease i n  frequency of the pylon/wing 

A dramatic i l l u s t r a t i o n  

d 



the cases i n  which the rotor  is on and of f .  

When the pylon yaw s t i f fness  was reduced by unlocking the  

pylon yaw degree of freedom and soft-mounting the pylon i n  yaw 

re la t ive  t o  the wing t i p  (K 

decreased s l igh t ly  (Fig. 5-14). 

mode, the pylon/rotor combination executing a low-amplitude, 

e l l i p t i c a l  forward whirl motion. 

6 = 5 x 10 ft-lb/rad) the s t a b i l i t y  
Yaw 

F lu t te r  was st i l l  i n  the wing beam 

The par t icular  yaw f l e x i b i l i t y  

employed i n  t h i s  var ia t ion effect ively produced a more nearly 

isotropic arrangement of the  pylon support spring rates .  Since the 

region of i n s t ab i l i t y  i n  a plo t  of c r i t i c a l  pylon yaw s t i f fnes s  

against c r i t i c a l  pylon pitch s t i f fnes s  is  extended along the l i n e  

representing a s t i f fnes s  r a t i o  of unity (see Fig. 4-2, fo r  

example) the  configuration approaching isotropy i n  the pylon 

supports i s  more prone t o  experience an i n s t ab i l i t y  than one i n  

which one of the s t i f fnesses  i s  s ignif icant ly  l e s s  than the other. 

Sample t races  of the model response at f l u t t e r  for  the caee of the 

pylon yaw unlocked (diemnd symbol i n  Fig. 5-14) are shown i n  

Fig, 5-19. The computer output corresponding t o  t h i s  configuration 

fo r  an airepeed of 320 knots is  presented i n  Table 5-5. 

Suppression of the wing beam and chord degrees of freedom* 

gave a s ignif icant  increase i n  s t ab i l i t y .  This result might appear 

* 
The manner i n  which the wing beam and chord degrees of freedom 

were locked out moved the  effect ive pylon pi tch pivot forward from 
the conversion axis t o  the wing e l a s t i c  axis (so tha t  
f t  and iil = 1.33 f t ) ,  The effect ive pylon yaw pivot remained 
a t  the conversion axis location (h2 = 6.92 f t  and 5, = 2.39 f t ) .  

h i  = 5.86 
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t o  be a t  variance w i t h  the sometimes-invoked analogy i n  r ig id  

propeller whirl f l u t t e r  considerations which regard the  e f fec ts  of 

wing ve r t i ca l  bending as equivalent t o  an increase i n  the hub 

t ranslat ional  damping which is  s ignif icant ly  s tab i l iz ing  f o r  a 

propeller. However, because of the blade flapping freedoms the  

frequency response character is t ics  of a proprotor are fundamentally 

different  from those of a propeller (see Fig. 4-20a). I n  

par t icular ,  aH/aq for  a propeller i s  always stabiliziw irrespec- 

t i v e  of the mast pitching f’requency while the sign of aH/aq for  a 

proprotor i s  highly dependent on the frequency of the mast pitching 

osci l la t ion.  For the proprotor, locking out the wing beam degree 

of freedom increases the pylon pi tch frequency re la t ive  t o  i t s  

value i n  the coupled pylon/wing mode i n  which the  pylon pi tch 

and wing beam motions are inphase (as i n  the  f l u t t e r  mode). This 

increases the separation between the pylon pi tch mode and the l o w  

frequency flapping mode which, as pointed out i n  Chapter 4 ,  is  

s tabi l iz ing.* Some experimental results showing the s tab i l iz ing  

effect  of increased wing tors ional  s t i f fness  are presented i n  

R e f .  5-8. I f  i n  addition t o  locking out the  wing beam and chord 

freedoms, the pylon yaw degree of freedom is unlocked (K 

3.76 x 10  

indicated i n  Fig. 5-14. 

pylon pi tch s t i f fnes s  and reduced pylon yaw s t i f fnes s  gave a 

= 

ft- lb/rad) a decrease i n  s t a b i l i t y  i s  realized, as 
Yaw 

6 

The par t icular  combination of increased 

*The reader i s  also referred t o  the discussion associated w i t h  
Fig. 4-15a i n  Chapter 4. 
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system which was more nearly isotropic i n  nature and hence, by the  

reasoning employed above, more l i k e l y  t o  experience an in s t ab i l i t y .  

With the wing beam and chord degrees of freedom suppressed 

and the pylon locked t o  the wing t i p  i n  yaw the in s t ab i l i t y  w a s  

effect ively a pure pylon pi tch osc i l la t ion  near the  pylon pi tch 

natural  frequency. 

produce approximately the same uncoupled frequency as t ha t  i n  the  

pi tch direction the in s t ab i l i t y  manifested itself as a low-ampli- 

tude forward whir l  of the pylon near the pylon pi tch natural  

When the pylon yaw s t i f fnes s  w a s  adjusted t o  

frequency. In both cases i n  which the  wing freedoms were 

suppressed, rotor  flapping i n  space was s m a l l  but of somewhat larger  

magnitude than when the wing was unrestrained. 

( 4 )  Wing Aerodynamics - The s t i f fness  of a strength-designed 

wing for  t i l t - ro to r  application is generally suf f ic ien t ly  high t o  

relegate the f l u t t e r  speed of the pylon/wing combination (with 

blades replaced by an equivalent weight) t o  speeds w e l l  beyond the 

proprotor mode f l i g h t  envelope. This suggests t ha t  wing aero- 

dynamics w i l l  contribute primarily t o  damping wing motions as far 

as proprotor/pylon s t a b i l i t y  i s  concerned. 

t h i s  contention i n  Fig. 5-14 which shows tha t  s t a b i l i t y  i s  

increased with the wing aerodynamlc fa i r ings  installed. '  

Credence is  given t o  

This 

indicates t ha t  proprotor aerodynamic forces are predominant i n  the 

ultimate balance of forces at f l u t t e r  and provides some 

jus t i f ica t ion ,  a pos ter ior i ,  tha t  i n  t h i s  f l u t t e r  mode at  l e a s t ,  

* 
Flut te r  was i n  the  wing beam mode. 
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wing aerodynamics can be neglected as a first approximation. 

The general trend of decreasing s t a b i l i t y  with increasing 

rotor  rpm shown fo r  the reference and 10,000 ft s t a b i l i t y  boundaries 

over the  rpm range shown was found for  d l  values of t he  adjustable 

parameters of the  model. 

was, i n  a l l  cases, i n  agreement with the corresponding measured 

"he predicted f l u t t e r  mode and frequency 

mode and frequency. 

Damping Concept: The l inear  s t ruc tura l  damping concept i n  

which the damping force i s  proportional t o  the  e l a s t i c  restoring 

force but inphase wi th  the velocity of motion i s  commonly employed 

i n  fixed-wing f l u t t e r  analyses t o  account for  energy dissipation, 

i n  contrast t o  the  more familiar viscous model of damping i n  which 

the damping force i s  proportional t o  the  velocity of motion. The 

analyt ical  r e su l t s  shown i n  Figs. 5-14 through 5-17 were based on 

the use of the  s t ruc tura l  damping model. Since t h i s  model of 

damping is s t r i c t l y  val id  only fo r  nondecaying sinusoidal motions, 

such as  a t  the neutral  s t a b i l i t y  condition j u s t  p r ior  t o  f l u t t e r ,  

a rigorous mathematical jus t i f ica t ion  for  associating any physical 

interpretat ion t o  the  predicted sub-crit ical  response i s  lacking. 

The reasonable sub-crit ical  correlation f o r  $2 = 238 r p  seen i n  

Fig. 5-15 fo r  t he  case of s t ruc tura l  damping is  even more remark- 

able with reference t o  the corresponding results fo r  the  case of 

viscous damping i n  Fig. 5-20 - the  predicted sub-crit ical  response 

i s  essent ia l ly  the  same fo r  both types of damping f o r  all three 

rpm. The author of fe rs  the  following comments for  consideration 

regarding t h i s  apparent anomaly. 
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Damping, e i ther  s t ruc tura l  o r  viscous, is  introduced in to  

the equations of motion as an equivalent constant desrping co- 

e f f ic ien t  appropriate t o  each mode of vibration, the  coefficients 

being established on the  basis of matching the  energy dissipation 

of the t rue  damping mechanism at some c r i t i c a l  frequency condition, 

such as a t  a resonance condition o r  at f l u t t e r .  

other than that  for  which the damping coefficients were evaluated 

e i ther  model of damping will, generally speaking, predict the wrong 

damping force. 

from measured wind-off decay t races .  With reference t o  Figs. 5-16 

and 5-17, the coupled frequencies of t he  model ( i n  par t icular  the 

wing beam mode) vary re la t ive ly  s l i gh t ly  with increasing airspeed 

through the f l u t t e r  speed so that the  frequency at  which each of 

the  damping coefficients was evaluated is not f a r  removed from 

the f l u t t e r  frequency. That the predicted sub-crit ical  damping 

using s t ruc tura l  damping i s  i n  general agreement with the levels  

predicted using viscous damping should therefore be no surprise,  

These thoughts are  implicit  i n  a recent note by Sc&uilan (Ref. 5-9) 

commenting on a paper by Crandall ( R e f  5-10 1. 

For frequencies 

Damping i n  the physical model was established 

Since the s t ruc tura l  damping representation i s  mathematically 

correct at  the neutral  s t a b i l i t y  condition it i s  of i n t e re s t  t o  

compare the s t a b i l i t y  boundaries resul t ing from the  use of 

s t ruc tura l  and viscous damping. 

Fig. 5-21 f o r  the  case of the  reference configuration. 

of viscous damping i s  seen t o  be analyt ical ly  destabi l iz ing 

T h i s  comparison is made i n  

The use 
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r e l a t ive  t o  the  use of s t ruc tu ra l  damping. 

s t ruc tura l  and viscous damping d iss ipa te  the  same amount of energy 

Recalling* tha t  

i n  a single-degree-of-freedom sinusoidal motion of frequency o 

w h e n  

frequency of the  corresponding in-vacuum mode the  quantity 

g = 2 r,(o/an), i f  the f lut ter  frequency is less than t h e  

2 < 
must be greater  than g t o  maintain the  same energy diss ipat ion.  

Since the  approximation 

(as i s  comonly done) and the  f l u t t e r  frequency w a s  such tha t  

d o n  < 1, the  use of viscous damping resul ted i n  t h e  reduced l eve l  

of s t a b i l i t y  shown i n  Fig. 5-21. Similar e f f ec t s  have been 

demonstrated fo r  propeller w h i r l  f l u t t e r  ( R e f .  5-11), 

g = 2 < w a s  used i n  the calculations 

Unsteady Aerodynamics: Vortex shedding from the  ro tor  blades 

r e su l t s  i n  a l a g  i n  the  blade element l i f t  from i t s  quasi-steady 

value based on the instantaneous angle of a t tack.  A cursory 

study w a s  made on the influence of t h i s  aerodynamic lag  on the  

s t a b i l i t y  of the baseline configuration by introducing the  

e f fec ts  of f l o w  unsteadiness v i a  Theodorsen's Circulation Function. 

These r e su l t s  a r e  summarized i n  Fig. 5-22. The quasi-steady 

r e su l t s  correspond t o  a reduced frequency of zero s o  tha t  the  

Circulation Function becomes ident ica l ly  equal t o  1.0. Unsteady 

aerodynamics are  seen t o  be analyt ical ly  s t ab i l i z ing  on proprotor/ 

pylon s t a b i l i t y ,  a result already established f o r  propellers i n  

Ref. 5-12. It should be mentioned tha t  t h i s  s t ab i l i z ing  influence 

is predicted even i f  Mach number e f f ec t s  are included. 

* See, fo r  example, W. T. Thomson: Vibration Theory and 
Applications, &entice-Hall, 1965, pp. 72-73. 

d 
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The unsteady boundaries a re  based on two w a y s  of select ing 

the reduced frequency: 

t o  be the rotor  speed and the reduced frequency specified using 

i n  one case the wake frequency w a s  assumed 

tha t  frequency; i n  the other case the wake frequency w a s  taken t o  

be equal t o  the coupled wing beam natural  frequency (since f l u t t e r  

was known t o  occur i n  t ha t  mode). 

selection G f  reduced frequency yields a s t a b i l i t y  boundary more 

The second approach t o  the 

nearly i n  agreement with the quasi-steady r e su l t  since the f l u t t e r  

frequency i s  near the  coupled wing beam natural  frequency and t h i s  

known value w a s  used t o  specify, i n  e f f ec t ,  the  f l u t t e r  reduced 

frequency. 

The following procedure is  suggested i f  Theodorsen unsteady 

aerodynamics are t o  be used t o  generate the proprotor aerodynamics: 

1. Calculate the system coupled natural  frequencies over the  
range of rotor  rpm fo r  which f l u t t e r  calculations w i l l  be made. 

2. Using the frequency of one of the system modes ju s t  
calculated, s a y  the lowest mode frequency, carry out a 
f l u t t e r  solution. This establishes a f l u t t e r  speed. 

3. Choose another mode frequency and repeat s tep  2 ,  e tc .  

4. 
the one of prac t ica l  in te res t .  

The lowest f l u t t e r  speed so calculated i s  taken t o  be 

Q l o n  S ta t i c  Divergence: For the model configuration i n  which 

the  wing beam and chord degrees of freedom were locked out ,  the 

flapping freedom was additionally locked out and the pylon yaw 

re s t r a in t  reduced t o  a leve l  (K 
Yaw 

t o  precipi ta t ing a pylon s t a t i c  divergence before encountering a 

692,000 ft-lb/rad) conducive 

w h i r l  ins tab i l i ty .  As the airspeed was incrementally increased 

the model pylon was plucked i n  yaw and the resul t ing frequency of 

d 
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osc i l la t ion  noted. 

maximum permissible blade col lect ive pi tch was maintained as speed 

was increased i n  order t o  maximize the destabil izing shear force 

aY/a$Jm 

re la t ive ly  low. 

an indication of the  effects  of ro tor  rpm. 

with the calculated var ia t ion,  are shown i n  Fig. 5-23. 

actually represent a composite of all data  points i r respect ive of 

the  rotor  speed, which varied between 80 and 120 rpm. 

indicated tha t  the experimental spread on rotor rpm had a 

re la t ive ly  s m a l l  e f fect  on the predicted var ia t ion of frequency 

w i t h  airspeed. 

calculated resu l t s  which are shown i n  the figure, 

be obtained through the  divergence speed because the limited yaw 

freedom available (see Fig. 5-7) permitted the pylon t o  h i t  the 

yaw stops at speeds beyond about 280 knots. 

data was obtained, however, agreement with the calculated r e su l t s  

is  good. 

"he minimum rotor  rpm consistent w i t h  the  

(see F i g .  4-23) so t h a t  the divergence speed could be kept 

Some points were repeated at higher rpmto  give 

These r e su l t s ,  along 

The data 

Analyses 

The average rotor  speed (100 rpm) was used i n  the 

D a t a  could not 

I n  the region where 

Thrust Effects: Thrust has generally been found t o  have a 

s tab i l iz ing  effect  on both propeller and proprotor whirl s t ab i l i t y .  

Data were obtained with the model operating i n  a powered configura- 

t i on  w i t h  wing fa i r ings  ins ta l led  and zero hub r e s t r a in t  fo r  

several  values of rotor  rpm at f l i gh t  speeds somewhat below the 

corresponding windmilling neutral  s t a b i l i t y  airspeed." O f  

t 
The square symbol i n  Fig. 5-14. 
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gart icular  in te res t  i s  the effect  of thrust on the  damping of the  

wing beam mode. Some typical results are presented i n  Fig. 5-24, 

which shows the wing beam mode damping as a function of the 

proprotor thrust  for  two combinations of ro tor  rpm and airspeed. 

Positive values of th rus t  indicate a net propulsive forceinegative 

values indicate tha t  t he  proprotor thmst i s  acting i n  the  drag 

sense ( ie . ,  a f t )  .The cruise thrus t  range for  the  Model 266 is also 

indicated, the range shown including extremes which could be 

encountered i n  flight. Also shown is the measured value of 

damping for  the  corresponding windmilling condition. Note tha t  

thrust  s ignif icant ly  increases the leve l  of damping i n  the  wing 

beam mode. 

mechanical damping. 

these resu l t s  i s  tha t  the damping levels  are a minimum near the  

negative thrust  l eve l  of the windmilling condition. This implies 

tha t  the windmilling condition represents a minimum s t a b i l i t y  

condition as f a r  as proprotor s t a b i l i t y  is concerned, Justifying 

the use of windmilling models i n  l i e u  of powered models. The 

same conclusion has been established by other investigators. 

A small portion of t h i s  increase is due t o  drive t r a i n  

The important conclusion t o  be drawn from 

Data obtainea at  other rotor speeds and airspeeds gave 

results leading t o  the  same conclusion as above. 

Gust Response: Analytical methods fo r  determining a i r c ra f t  

response t o  turbulence are more often than not based on power 

spectral  analysis techniques which require the  def ini t ion of t he  

a i r c ra f t  frequency response function, t ha t  is ,  the response t o  
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sinusoidal gust excitation. 

measuring the frequency response function u t f l i z ing  aeroelast ic  

models i n  a semi-free f l i gh t  condition using the  gust generated by 

the osc i l la t ing  vane system of the transonic dynamics tunnel has 

been underway for  several years. 

t h i s  investigation may be found i n  Refs. 5-5 and 5-13. 

A study t o  assess the  f e a s i b i l i t y  of 

Some of the ear ly  findings of 

For two "fl ight" conditions w e l l  within the proprotor s t a b i l i t y  

boundary (see Fig. 5-14) the system excitation was recorded f o r  

several model configurations. 

the data so obtained do give an 

frequency response character is t ics  and permit an evaluation of 

the effects  of rotor  and wing aerodynamics, rotor  speed, and 

airspeed on system response. 

Although the  model was not "free" 

indication of the cantilevered 

A measure of the gust-induced angle of attack (or ,  simply, 

gust o r  stream angle) was provided by means of a s m a l l  balsa vane 

flow direction transmitter,  located approximately two ro tor  

diameters upstream (Fig. 5-2) which gave readings proportional 

t o  the stream angle. 

the stream angle for  an inphase (symmetric) osc i l la t ion  of the 

biplane vanes is  shown i n  Fig. 5-25. The curve shown i s  an 

average of data obtained from runs at  several tunnel speeds. 

The amplitude of the stream angle has been normalized on the 

maximwn amplitude of osc i l la t ion  of the biplane vanes (6') and 

plot ted against the  frequency parameter w/V, where w i s  the  

frequency of vane osc i l la t ion  i n  rad/sec and is  the tunnel 

The variation of the ve r t i ca l  component of 

V 



velocity i n  ft/sec. 

reciprocal of the wavelength (spacing) between the vortices shed 

fromthe t i p s  of the osc i l la t ing  vanes. 

Fig, 5-25 compares very w e l l  with measurements obtained by others 

(see, for  example, Ref .  5-6) using hot wire anemometers and fast 

response pressure probes. 

This parameter is  proportional t o  the 

The result shown i n  

The results selected f o r  presentation here, the wing root 

ve r t i ca l  bending moment amplitude response as a function of gust 

frequency, can be taken as one measure of the response of the 

system t o  ve r t i ca l  gust excitation. 

re la t ive  influence of the rotor  and wing l i f t i n g  surfaces, three 

model configurations were employed: 

blades replaced by an equivalent lumped weight; rotor  only, w i t h  

the  wing aerodynamic fair ings removed; wing and rotor  combined. 

These results are summarized i n  Figs. 5-26 t o  5-28. In  each of 

these figures the wing bending moment response has been normalized 

by the maximum amplitude of the gust angle using the curve of 

Fig. 5-25. The gust frequencies indicated are the equivalent 

full-scale values. 

In order t o  ascertain the 

wing only, with the rotor  

Comparison of the rotor-on and rotor-off response curves fo r  

the wing panels-on configuration of Fig. 5-26 i l l u s t r a t e s  tm 

proprotor-related effects :  

of the rotor  inplane H-force (DH/as 

indicated by the r e l a t ive  magnitudes of the bending moments; 

and second, the rotor contribution t o  wing beamwise 

f irst ,  the significant contribution 

t o  wing bending loads, as 
8 



damping," as indicated by the re la t ive  sharpness of the resonance 

peaks, 

resonance with the wing beam frequency. 

off  configuration is  shif ted t o  the higher frequency s ide of the  

The peak amplitudes occur when the gust frequency is i n  

This peak fo r  the  blades- 

rotor-on peak because the proprotor inplane shear force decreases 

the frequency of the wing beam mode. For the rotor-on case the 

bending moment i s  considerably la rger  than for the  rotor-off case 

throughout the  range of gust frequencies investigated. The wing 

chord mode frequency (about 2,8 cps) is  within the gust frequency 

range but i s  absent from the reaponse curves because the gust 

excitation is primarily ver t ica l  and there i s  very l i t t l e  coupling 

between the wing beam and wing chord modes, These resu l t s  

indicate tha t  inplane shears generated by ve r t i ca l  gusts while 

i n  a cruise mode increase gust sens i t iv i ty .  

Comparison of results with the rotor  on for the  cases i n  which 

the  wing aerodynamic fa i r ings  a re  on and off (Fig. 5-27) shows 

tha t  the bending moment response with the fa i r ings  on i s  somewhat 

larger  at  gust frequencies up t o  the wing beam frequency and 

thereaf ter  remains about the  same as for the  fa i r ings  of f .  The 

resonance peaks are seen t o  occur at about the same frequency and 

have approximately the same width. This suggests t ha t  ro tor  

damping predominates at wing beam resonance. 

An indication of the e f fec t  of ro tor  rotat ional  speed on the 

& 

A t  t h i s  par t icular  airspeed the  proprotor contributes posit ive 
damping t o  the wing beam mode. 

d 
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bending moment response may be obtained from Fig. 5-28 f o r  the 

case of all wing fair ings removed. 

represent the high and low cruise  rpm fo r  the  Model 266, 

bending moment is seen t o  be s ignif icant ly  increased when rprn is 

reduced, par t icular ly  i n  the region of resonance. 

Model 266 the  design cruise rpm based on maximum propulsive 

efficiency is  238 rpm while the higher value is  intended fo r  

turbulence penetration and during maneuvering because blade 

flapping i s  reduced. With,reference t o  Fig. 5-28 increased rpm 

during turbulence penetration i s  also beneficial  i n  reducing the 

wing bending loads, 

The pmt icu lar  rpm shown 

The 

For the  

Somewhat obscurred i n  the response curves of Fig. 5-28 i s  a 

heavily damped, low-amplitude resonance "peak" a t  a gust frequency 

of about 0.8 cps. 

frequency flapping mode. 

system i s  about 0,8 cycles/rev, 

frequency of 0.2 cycles/rev f o r  the 

speed of 238 rpm i s  equal t o  0.8 cps i n  the fixed system) fo r  

298 rprn the fixed system frequency is  1.0 cps. 

are generally well damped f o r  moderate or  zero values of flapping 

r e s t r a in t  as pointed out i n  Chapter 4. 

an experimental ver i f icat ion.  

w a s  accompanied by v is ib ly  la rger  pylon pitching motions. 

corresponding high frequency flapping mode frequencies (5  t o  6 cps) 

were beyond the excitation capabili ty of the osc i l la t ing  vane 

This resonance i s  a manifestation of the low 

The flapping frequency i n  the rotat ing 

This gives a fixed system 

flapping mode. A ro tor  
sdwf3 

The flapping modes 

Theee results const i tute  

The flapping at these frequencies 

The 

d 
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system. 

The resu l t s  shown i n  Figs. 5-26 t o  5-28 indicate tha t  "free- 

f l igh t"  rotary-wing models, i n  particular t i l t - ro to r  models, could 

be used t o  measure the necessary frequency response functions for  

use i n  gust response analyses. 

B l a d e  Flapping: Some results showing the  effects  of non- 

symmetric 3ub res t ra in t  on the to ta3  flapping derivatives are 

given i n  Fig. 5-29. 

Ling-Temco-Vought 7 x 10-ft low-speed wind tunnel during the  

Oomposite Aircraft Program. Both a6/aclm and af3/a$m, t he  change 

i n  the maximum steady flapping per unit  change i n  pitch and yaw 

angle respectively,are shown as a function of airspeed for  both 

the  high and low rpm design speeds of the Model 266. 

pitch-flap coupling and the non-isotropic hub r e s t r a in t  a 

deflection of the  mast i n  pi tch o r  yaw results not only i n  

longitudinal or l a t e r a l  flapping but also some l a t e r a l  and longit- 

udinal flapping, respectively, @ is  the magnitude of the vector 

sum of these two flapping components. 

increase i n  the napping derivatives i s  associated with e i ther  an 

increase i n  airspeed or  a reduction i n  rpm, as already demonstrated 

by the  trend studies of Chapter 5. 

of wing/rotor aerodynamic interference i s  provided for  t he  high 

rpm condition where additional data i s  shown for  t he  case of the  

wing aerodynamic fair ings removed. Comparison of the  panels-on 

and panels-off data indicates tha t  the  effect  of the  rotor/wing 

aerodynamic interference is t o  increase the flapping derivative 

The data were obtained by B e l l  i n  the  

Because of 

The resu l t s  show tha t  an 

An indication of the effects  
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Elightly relative to the case with the wing panels removed. 

remaining difference between the pitch and yaw results are a conse- 

quence of the non-symmetric hub restraint. 

8f3/8am are slightly lower than those for 

larger flapping restraint is in the longitudinal direction. 

shown in Fig. 5-29 are the corresponding predicted derivatives based 

on the use of an aerodynamic loading distributed over the blade 

and an aerodynamic loading "lumped" at the 3/4-blade radius. 

Agreement between the measured and calculated values is good for 

both theories. Since the calculated results do not account for 

any rotor/wing aerodynamic interference the difference between the 

calculated pitch and yaw derivatives gives the complete effect 

due to the asymmetric hub restraint. 

The 

The data shown far 

aB/aJh, because the 
Also 

In the feathering sequence of transition, flapping sensitivity 

to a giuen mast angle of attack varies with rotor rpm. 

variation of the steady-state flapping response is given in 

Fig. 5-30. 

test and served to establish a steady-state flapping response 

baseline for evaluating the transient flapping response during 

feathering.The inclusion of these results here, however, seems 

appropriate. 

structure the wind-on mast angle of attack a 

(it was nominally 1'). 

Fig. 5-30 is that the trend is predicted correctly. 

to be noted that the predicted results are in good agreement 

with the measured values even at very low rpm. 

A typical 

The data were actually obtained during the January 1970 

Since the proprotor mast was not affixed to a rigid 

was not known m 
The important conclusion following from 

It is also 

The peak in the 

d 



flapping response occurs when the rotor  speed is  i n  resonance with 

the flapping natural  frequency. 

(b)  January 1970 Test 

Proprotor S tab i l i ty :  A reference configuration was again 

established. 

w i t h  the  pylon yaw freedom locked out,  a hub r e s t r a in t  of 86,800 

ft-lb/rad*, 

t i on  of 15% w i t h  the wing aerodynamic fair ings instal led.  

5-31 shows the f l u t t e r  boundary fo r  t h i s  configuration as a 

function of rotor  rpm from a value representing an overspeed 

condition down t o  zero rpm, the  low rpm regime being important fo r  

s t a b i l i t y  considerations related t o  the feathering sequence of 

t rans i t ion  for  a folding proprotor a i r c ra f t .  

accompanying the  calculated r e su l t s  indicates tha t  the  proprotor/ 

pylon/wing system would experience awide var ie ty  of modes of 

f l u t t e r  across the range of rotor  rpm shown. 

of rotor  rpm the experimentally determined f l u t t e r  speeds agree 

reasonably well with the  predicted values. 

osc i l la tory  loads resul t ing from operation 

pylon/wing or blade modal frequencies often l imited the maximum 

airspeed which could be reached, These points a re  indicated by 

the  so l id  symbols. 

This consisted of the  basic Model 266 configuration 

0 = -22.5 , and a simulated wing f u e l  weight distribu- 63 
Fig. 

The annotation 

A t  the two extremes 

Excessive vibration or  

near resonances w i t h  the 

* 
This gave an uncoupled flapping natural  frequency of 1.38 cps. 

d 
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The calculated s t a b i l i t y  boundaries i n  Fig. 5-31 represent 

the first or  lowest f l u t t e r  airspeed. 

carr ied out through 700 knots (with no Mach correction) i n  order 

t o  establish the character of the higher f l u t t e r  modes. 

t o  say the precise def ini t ion of the boundary required f ine  incre- 

ments i n  rotor  r p .  

la ted  f l u t t e r  frequencies, the calculated frequencies representing 

an airspeed sweep through 700 knots, 

and frequencies were i n  agreement with the experimental results i n  

a l l  cases but t ha t  at  

having a frequency of 6.9 cps was predicted whereas the measured 

in s t ab i l i t y  involved a coupled wing beam/rotor flapping motion at  

1.6 cps, near the  wing beam natural  frequency, 

wing tors ion ac t iv i ty  w a s  v isual ly  observed i n  the  175 t o  220 rpm 

range the f l u t t e r  observed at 215 rpm was c lear ly  i n  the  wing beam 

mode and not torsion. 

wing tors ion in s t ab i l i t y  was "masked" i n  some manner various system 

parameters were analyt ical ly  varied t o  assess the sens i t iv i ty  of 

the wing tors ion in s t ab i l i t y  t o  these parameters. 

presenting the  results of these paremetric studies it w i l l  be 

illuminating t o  discuss the nature of the f l u t t e r  modes occurring 

through the  rpm spectrum. 

"he f l u t t e r  mode f o r  

Calculations were, however, 

Needless 

Fig. 5-32 compares the measured and calcu- 

The predicted f l u t t e r  modes 

52 = 215 rpm. A wing tors ion in s t ab i l i t y  

Although s ignif icant  

To investigate the poss ib i l i ty  t ha t  the 

However, before 

52 5 240 rpm was i n  the wing beam mode, 

t h a t  is, i n  the coupled pylon/wing mode i n  which pylon pitching 

(wing tors ion)  is  inphase with wing beemwise bending. These 

1 
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f l u t t e r  modes are  the  same as those obtained f o r  the baseline 

s t a b i l i t y  boundary i n  the September 1968 t e s t  and all have a root 

behavior similar t o  the one shown i n  Fig. 5-17. 

Between Q = 240 r p m  and Q = 220 r p m  and again between 

120 r p m  and 165 rpm f l u t t e r  i s  predicted t o  be i n  a coupled wing 

beamwise bending/rotor rigid-body flapping mode. Root l o c i  showing 

the root behavior i n  these r p m  ranges a re  given i n  Figs. 5-33 and 

5-34. These show tha t  i n s t a b i l i t y  i s  associated with the  l o w  

frequency flapping root. 

A wing tors ion mode i n s t a b i l i t y  is predicted i n  the  rpm 

range between 165 and 220. 

characterized by an out of phase coupled wing beam and tors ion  

Recell t ha t  the  wing tors ion mode i s  

motion with tors ion being the predominant motion and somewhat 

more flapping i n  space than fo r  the  wing beam mode. An indication 

of the root behavior i n  t h i s  regime may be obtained from Fig.  

5-35 

Below 120 rpm f l u t t e r  i s  predicted t o  be i n  the high 

frequency ( 5 2  + w ) flapping mode. B 
t o  several  rotor  rpm i n  t h i s  range, including zero rpm, a re  

presented i n  Figs. 5-36 t o  5-39. 

Root l o c i  p lo t s  corresponding 

The point labeled "no f l u t t e r "  

at 79 r p m  was l imited by blade loads as a consequence of  

excessive wobbling of the tip-path-plane, indicat ive of the 

approach t o  some type of flapping in s t ab i l i t y .  

of increased s t a b i l i t y  is  evident i n  the region of 50 rpm. 

A small region 

This 

i s  due t o  flapping coupling with the  wing beam mode as implied 

by Fig. 5-38. 

d 
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The zero rpm ( i e .  stopped ro to r )  i n s t a b i l i t y  i s  associated 

w i t h  the  Sl + w flapping mode (Fig. 5-39) and i s  characterized 

by predominantly la rge  amplitude flapping osc i l l a t ions  of  the t i p -  

path-plane near the uncoupled tip-path-plane flapping natural  

frequency on the  hub springs (1.28 cps ) , which w a s  w e l l  below the  

lowest wing s t ruc tu ra l  frequency. Although the ro tor  w a s  not 

turning, the tip-path-plane flapping motion observed visual ly  had 

a forward wobbling motion as though a t r ave l l i ng  wave w a s  moving 

i n  the  forward whi r l  d i rect ion.  There was negl igible  wing beam, 

chord, and tors ion  motion accompanying the  flapping. Fig. 5-40 

shows t h e  var ia t ion i n  f l a p  damping with airspeed. 

of cR = .Ol5 w a s  used i n  obtaining the s t a b i l i t y  boundary i n  

Fig. 5-31. The r e su l t s  i n  Fig. 5-40 indicate  tha t  the ro to r  hub 

s t ruc tu ra l  damping i s  closer  t o  

however, t h a t  the  correct t rend i s  predicted over t h e  range i n  

which data was obtained. A sample of the computer output corres- 

ponding t o  t h i s  f l u t t e r  point i s  given i n  Table 5-6. Sample 

t races  of the  zero rpm i n s t a b i l i t y  are shown i n  Fig. 5-41 f o r  

a t i m e  about 7 seconds after a wing chord exci ta t ion.  

par t icu lar  t i m e  the  flapping i s  ac tua l ly  diverging, having a 

negative damping equal t o  1.16% of critics. 

qui te  m&ld w i t h  a r e l a t ive ly  long buildup t i m e  after chordwise 

exci ta t ion.  

B 

A hub damping 

CR = .025, It i s  t o  be noted, 

A t  t h i s  

The i n s t a b i l i t y  i s  

1 
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The low rpm f l u t t e r  mode was similar i n  character t o  the  zero 

a predominantly large amplitude flapping motion rpm f l u t t e r  mode: 

near the S l  + w flapping mode frequency, the tip-path-plane 

exhibiting a wobbling motion i n  the forward whirl direction, but 

with s l igh t ly  l e s s  flapping. 

B 

In the low rpm range where g lu t t e r  data were obtained the 

predicted f l u t t e r  character is t ics  a re  i n  agreement with the measured 

ones. 

the  mthematical model, par t icular ly  as regards blade stall e f fec ts .  

A t  these low rpm a signif icant  portion of the  inboard section of 

the blade i s  s t a l l ed  and a portion of the outboard end. These 

e f fec ts  were approximately accounted for  by estimating the  

dis t r ibut ion of blade section windmilling angle of attack a t  the 

low values of rpm and using blade root cutout and t i p  cutoff t o  

eliminate the regions developing negligible l i f t  ( i e , ,  the s t a l l ed  

portions).  

has a s tab i l iz ing  effect  on the low rprn flapping in s t ab i l i t y .  

This i s  pleasantly surprising i n  l i g h t  of the simplicity of 

Trend studies (not presented here) have shown tha t  t h i s  

The zero and low rpm i n s t a b i l i t i e s  were not anticipated pr ior  

t o  the t es t ,  as reference t o  the comments i n  the t e s t  log at the 

t i m e  the zero rpm ins t ab i l i t y  was encountered would indicate. 

Since the i n s t a b i l i t y  was not understood at the time of the tes t ,  

i n  order t o  gain insight  i n to  the nature of the in s t ab i l i t y  and t o  

assess the  influence of system parameters, two adjustable para- 

meters were varied (% and 6 ) and analyt ical  trend studies on 

the ef fec t  of system degrees of freedom, precone, and s t ruc tura l  

damping were additionally carr ied out. 

3 

The r e su l t s  of these 
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parametric studies w i l l  be presented below a f t e r  summarizing the  

results of the wing tors ion Ins t ab i l i t y  sens i t iv i ty  study. 

WinK Torsion Ins tab i l i ty :  The par t icular  e f fec ts  of wing 

torsion s t ruc tura l  damping and proprotor precone on the  wing 

tors ion in s t ab i l i t y  a re  brought out i n  Fig. 5-42. A reduction 

i n  wing tors ion s t ruc tura l  damping i s  destabil izing, as  might 

have been anticipated. Precone i s  a lso  seen t o  be destabilizing. 

For ro tor  rpm i n  the range indicated the steady cent r i f iga l  

forces and airload drag acting on the  blades tend t o  bend the 

blades aft  i n  a direct ion t o  "wash out" par t  of the bui l t - in  

precone angle. 

probably closer t o  one or two degrees, and t h i s  would have the 

e f fec t  of s l i gh t ly  reducing the size of the tors ion in s t ab i l i t y  

region. 

The actual coning angle i n  t h i s  range of rpm i s  

The ef fec t  of wing aerodynamics was established ea r l i e r  t o  be 

pr inar i ly  i n  damping the wing beam motion fo r  the coupled mode 

i n  which the wing beam motion i s  inphase with the  wing tors ion 

motion. Now the  wing torsion in s t ab i l i t y  involves the  out-of- 

phase coupled wing/pylon mode which i s  characterized as mainly a 

pitching motion of the pylon about an effect ive pivot j u s t  a f t  

of the rotor.  

aerodynamic center the wing loading ac ts  as a posit ive spring on 

pylon pitching motions as w e l l  as contributing t o  increased damping 

i n  t h i s  mode. 

so the e f fec t  of wing aerodynamic damping on the  tors ion in s t ab i l i t y  

Since t h i s  position is located ahead of the  wing 

Wing aerodynamics are not included i n  the analysis 

d 

c 



298 

was assessed indirect ly  by increasing the wing torsion s t ruc tura l  

damping. 

damping (Bo = 2'. Q = .06) t o  "account" for  wing aerodynamic 

damping i s  seen t o  s h i f t  the tors ion in s t ab i l i t y  boundary t o  air- 

speeds beyond those associated with the coupled wing b e d r o t o r  

The combined ef fec t  of reduced precone and increased 

rigid-body flapping ins tab i l i ty .  

torsion in s t ab i l i t y  can be masked, at l e a s t  t o  the  extent thkt  it 

This result suggests t ha t  t he  

was not encountered experimentally. 

Fig. 5-43 summarizes the results of the analytical  study fo r  

assessing the influence of the  rotor  hub (gimbal) structural. 

damping on the Wing tors ion mode in s t ab i l i t y .  

crease i n  s t a b i l i t y  w i t h  increasing damping might have been 

The predicted in- 

anticipated since the f l u t t e r  mode involves significant flapping 

of the tip-path-plane re la t ive  t o  the mast making damping quite 

effective.  The r e su l t s  of Fig. 5-40 indicate tha t  might be 

closer t o  ,025 than ,015 which i s  i n  a direction t o  minimize the 

region of torsion in s t ab i l i t y .  

found t o  have no noticeable e f fec t  on the  calculated s t a b i l i t y  fo r  

Rotor hub structural. danping was 

rpm greater  than about 240 rpm since the motion at  f l u t t e r  is 

predominantly beamwise. 

Low Rpm Flapping Ins tab i l i ty :  To gain some insight into the  

degrees of freedom important i n  the f l u t t e r  mechanism a t  low rpm 

the pylon/wing degrees of freedom were sequentially suppressed 

analyt ical ly  and the s t a b i l i t y  boundary evaluated, 

are  summarized i n  Fig. 5-44. The chordwise freedom was established 

t o  have no effect  on s t a b i l i t y  below 120 rpm and thus the  5' of 

These re su l t s  
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freedom result i s  ident ica l  t o  t h a t  i n  Fig. 5-31. This boundary 

i s  included here fo r  reference. Deleting the  wing beam degree of 

freedom gives a boundary which cor rec t ly  pred ic t s  t h e  f lu t te r  air- 

speed, mode, and frequency through 30 r p m .  Beyond 30 rpm, although 

the f l u t t e r  airspeed i s  not predicted cor rec t ly  t h e  f l u t t e r  mode 

and frequency are. This indicates  t h a t  t h e  flapping i n s t a b i l i t y  i s  

not caused by flapping coupling with t h e  wing v e r t i c a l  bending 

motion, t h a t  i s ,  any flapping moments a r i s ing  from t h e  v e r t i c a l  

t r ans l a t ion  of the  hub due t o  wing beam bending are not the cause 

of the i n s t a b i l i t y  even though the f l a p  danping is very small at 

the  high inflow angles associated with low r p m .  Note t h a t  there 

i s  now no region of increased s t a b i l i t y  near SZ = 50 rpm, implying 

tha t  wing beam freedom i s  indeed s t a b i l i z i n g  on the  flapping mode 

i n  t h i s  region (refer again t o  t h e  root locus of Fig. 5-38). 

In the 3O of freedom case having the  pylon p i t ch  and yaw 

freedoms suppressed the shape of t h e  s t a b i l i t y  boundary through 

about 80 rpm i s  predicted ra ther  w e l l ,  although t h e  f l u t t e r  speeds 

agree with the reference val-aes only below about 40 rpm and above 

about 80 rpm. 

0 The 2 of freedom case, re ta in ing  j u s t  t he  tip-path-plane 

p i t ch  and yaw freedoms, surpr is ingly enough predic t s  t he  general 

d 



300 

average shape of the boundary through 100 knots, with excellent 

resu l t s  below 30 rpm. 

In a l l  cases the f l u t t e r  speed, mode, and frequency were 

predicted reasonably w e l l  at  very low (including zero) r p m  where 

data. was available for  correlation. This suggests tha t  i n  t h i s  

low r p m  range at l e a s t ,  parameters other than the pylon support 

conditions d ic ta te  the s t a b i l i t y  of the flapping modes, i n  particu- 

lar  the rotor design parameters. Some of these were systematically 

varied t o  es tabl ish t h e i r  influence on s t ab i l i t y .  Results of these 

parameter variations are given below, 

(1) Proprotor Precone - The ef fec ts  of precone on the  

s t a b i l i t y  of the  5' of freedom system are shown i n  Fig, 5-45, 

other parameters being fixed a t  t h e f r  reference configuration values. 

Decreasing precone is seen t o  be highly s tabi l iz ing.  

s t a b i l i t y  was predicted for Based 

on the reaul ts  of t he  low rpm trend studies presented thus f a r ,  

it can be concluded tha t  precone is  the cause of the flapping 

in s t ab i l i t y  a t  low (and zero) rpm.  I n  Chapter 4 it was pointed out 

t ha t  large values of precone destabil ize t h i s  same mode at high 

rpm.  It appears t ha t  at low rpm any precone, however small, can 

destabi l ize  the  flapping mode. 

No in- 

Bo = 0' through 500 knots. 

(2)  Rotor Hub Structural  Damping - Since the flapping 

in s t ab i l i t y  involves mainly tip-path-plane flapping it might be 

surmized tha t  hub s t ruc tura l  damping would have a beneficial  

influence on s t ab i l i t y .  

5-40 fo r  the  case of zero rpm. 

This was  already demonstrated i n  Fig. 

Its effects  on s t a b i l i t y  through 
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a rotor  speed of 100 rpm are  shown i n  Fig. 5-46 and indicate an 

overall  s tab i l iz ing  influence. The pylon/wing damping was also 

varied fo r  a fixed with negligible e f fec t  on the predicted 

s t ab i l i t y .  Hence, the only s t ruc tura l  damplng important at  low 

rpm i s  that a r i s ing  from the  hub gimbal. 

% 

(3)  Hub Restraint - A ro tor  design parameter which was both 

experimentally and analyt ical ly  varied was the hub flapping 

r e s t r a in t .  

on 5 (Figs. 5-47 and 5-48), an increase o r  a decrease from the  

nominal value employed i n  the reference configuration leading t o  

substantially higher f l u t t e r  speeds. 

showing the effect  of hub r e s t r a in t  on s t a b i l i t y  through a ro tor  

speed of 80 rpm are given i n  Fig. 5-49 fo r  the 5' of freedom 

system. 

The zero rpm s t a b i l i t y  was  found t o  be highly dependent 

Some calculated r e su l t s  

( 4 )  Pitch-Flap Coupling - For 63 = -32' the s t a b i l i t y  

boundary from high t o  zero rpm was again established both experi- 

mentally and analytically.  These results, given i n  Fig. 5-50, 

indicate %hat increased negative 63 i s  destabil izing throughout 

the rpm range investigated. 

were again limited by vibration o r  loads at the airspeeds shown. 

The corresponding measured and calculated f l u t t e r  frequencies are  

given i n  Fig. 5-51, the calculated results again representing an 

airspeed sweep through 700 knots. For rpm greater  than about 

240 f l u t t e r ,  as i n  the ease of 63 = -22.5, was i n  the  wing beam 

mode with the pylon executing a low-amplitude, highly e l l i p t i c a l  

The points denoted as "no f l u t t e r "  
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forward whirl. 

rpm f l u t t e r  had the same general character is t ics  as tha t  f o r  

Rotor flapping i n  space w a s  again small, The low 

= -22 . 5' except t ha t  the flapping amplitudes were s ignif icant ly  &3 

la rger  and the f l u t t e r  frequency was  reduced s l igh t ly ,  

mode and frequency agreed with the measured ones i n  d l  cases but 

t h a t  at 

tors ion mode but occurred i n  a coupled wing beam/rotor flapping 

mode near the wing beam coupled natural  frequency. This discre- 

pancy is  immediately evident i n  Fig. 5-51. However, the  e a r l i e r  

comments re la t ing  t o  the suppression of thecwing tors ion in s t ab i l i t y  

are also applicable here. 

The f l u t t e r  

52 = 218 rpm, where f l u t t e r  was predicted i n  the  wing 

The f l u t t e r  point experimentally determined at S I  = 172 rpm 

was i n  the predicted mode. The sub-crit ical  response, shown i n  

Fig, 5-52, i l l u s t r a t e s  an interest ing modal response behavior 

similar t o  t ha t  found by H a l l  ( R e f .  5-14). Besides the  

measured wing beam damping and frequency var ia t ion,  Fig. 5-52 

includes the calculated values f o r  both the  wing beam and low- 

frequency flapping modes. This behavior may be related t o  the 

associated root locus shown i n  Fig. 5-53. Note tha t  as airpseed 

is increased the wing beam mode becomes more stable while the low- 

frequency flapping mode becomes l e s s  stable.  

t rans i t ion  o r  switch from a dominant wing beam mode t o  a dominant 

flapping mode with an accompanying change i n  frequency. 

movement can be interpreted i n  terms of the measured model behavior 

i n  Fig. 5-52. The wing beam mode, being least stable a t  low speeds, 

II 

Thia indicates a 

"his 
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i s  a t  first dominant. As airspeed increases, however, its danping 

continually increases. The damping of the  SI - wB flapping mode 

meanwhile i s  continually decreasing, A mode switch occurs 

analyt ical ly  at 280 knots at a damping 17% of c r i t i c a l .  Beyond 

280 knots the 

abruptly becomes unstable as velocity i s  increased t o  about 320 

52 - we flapping mode i s  the  dominant mode and very 

knots. Since the flapping mode frequency is  only s l igh t ly  l e s s  

than the wing beam frequency i n  the v ic in i ty  of f l u t t e r  there  i s  

only a gradual, a lbei t  d i s t i n c t ,  t rans i t ion  i n  frequency of the  

beam mode as  the flapping mode begins t o  predominate over t he  

wing beam mode,* This same s i tua t ion  existed at  

6, = -22.5' (Fig. 5-33) but the response t races  below f l u t t e r  were 

such tha t  re l iab le  damping and frequency couldnot be determined from 

SI = 218 rpm for  

d 

them, Table 5-7 gives the computer output corresponding t o  Fig. 

@B 5-53 for an airspeed of 320 knots, 

flapping mode (#12) indicates t ha t  a larger  amount of wing beam 

motion i s  associated w i t h  th i s  mode than i n  the wing beam mode (#9). 

Examination of the  52 - 

This implies that the f l u t t e r  mode i s  not necessarily determined 

by the root which goes unstable as airspeed is increased but the  

frequency a t  which a root (either pylon/wing or  rotor  flapping) 

goes unstable, 

the  wing beam and 

frequency behavior shown i n  Fig. 5-52. 

It i s  also t o  be noted tha t  the coupling between 

flapping modes i s  implied by the  52 - uB 

* 
The mode switch reported by Hall (Ref. 5-14) w a s  from a high 

frequency pylon mode t o  the  low frequency flapping mode BO h i s  
r e su l t s  show an abrupt drop-off i n  frequency, 

d 



A summary of the 

speed i s  presented i n  

for  two d3 with the 

e f fec ts  of 6 on the zero rpm f l u t t e r  

Fig, 5-54. 

wing aerodynamic fa i r ings  removed. These 

3 
Flut te r  points were a lso  obtained 

r e su l t s  imply tha t  wing/blade aerodynemic interference i s  not a 

precipi ta t ing factor  i n  the flapping mode in s t ab i l i t y ,  

As a point of i n t e re s t  Fig. 5-55 shows the calculated f l u t t e r  

boundaries i n  the rpm range representative of cruise f l i g h t  f o r  

three values of 6 

or negative 63 is destabil izing on proprotor/pylon s t ab i l i t y .  

These results demonstrate tha t  negative 6 i s  s l igh t ly  more 

destabil izing than posit ive , Whirl i s  i n  the  forward direction 

a t  f l u t t e r  for  63 = 0 and -32' and i n  the backward direction for  

63 = +32O. 

As already shown i n  Chapter 4 large posit ive 3' 

3 

63 

In closing t h i s  discussion on the low rpm flapping in s t ab i l i t y  

it should be mentioned tha t  the necessity of l imit ing the  flapping 

amplitude during the feathering sequence of t rans i t ion  indicates 

t ha t  s ignif icant ly  increased values of hub r e s t r a in t  a re  needed as 

rpm approaches zero. 

may be only of academic in t e re s t ,  at  least fo r  the  design config- 

uration investigated. However, since it was a new phenomenon 

at tent ion w a s  directed t o  it and the related studies did permit 

exercising the analyt ical  procedure8 by providing data f o r  

correlation. 

This suggests tha t  the low rpm ins t ab i l i t y  

Blade Flapping Dewee of Freedom: With flapping completely 

locked out the s t a b i l i t y  increased but blade loads limited the 

maximum speed attainable.  Although no f l u t t e r  points could be 



30 5 

obtained, s t a b i l i t y  was demonstrated over the  same rpm range as 

the reference configuration through 300 knots f o r  

through 365 knots for 61 = 0. 

L? > 0 and 

Fig. 5-56 compares the wing beam 

mode danping versus airspeed for  62 = 300 rpm for flapping locked 

and unlocked. 

with flapping locked out is  notable. 

( c )  Some Results Applicable t o  the B e l l  Model 300 Tilt-Proprotor 

The s ignif icant  increase i n  the l eve l  of dmping 

Several companies a re  actively engaged i n  proprotor research 

directed a t  the advancement of proprotor technology. A s  par t  of 

i t s  e f fo r t ,  Bell Helicopter Company, i n  1969, designed and b u i l t  

a 25-fOOt flight-worthy proprotor for  full-scale ver i f icat ion of 

technology developed since the XV-3 and Transcendental Converti- 

planes, Subsequently, Bell contracted with NASA-Ames and the  

Army Aeronautical Laboratories (Ames Directorate) fo r  tests of 

the  25-foot proprotor i n  the Ames full-scale wind tunnel and fo r  

design studies of a proof-of-concept t i l t - ro to r  a i r c ra f t .  

The Bell design resul t ing from that study has been designated the 

Model 300. 

The two NASPpAmes/Belltest programs employing the 25-fOOt 

proprotor were conducted i n  the  Ames tunnel: a dynamic t e s t  i n  

July 1970 and a performance test  i n  November 1970. Figs. 5-57 

and 5-58, respectively, show the proprotor mounted i n  the  Ames 

full-scale tunnel for  these t e s t s ,  In  addition t o  establishing 

s t a b i l i t y  and performance characterist ics* steady-state flapping 

* 
Some of these r e su l t s  are presented i n  Ref. 5-15. 

d 
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i n  the airplane mode was measured for  several combinations of 

rotor  rpm and tunnel speed during the dynamic s t a b i l i t y  test. 

One combination was repeated during the powered test  t o  obtain an 

indication of the influence of winglrotor aerodynamic interference 

on steady-state blade flapping, 

derivative form, are tabulated i n  Table 5-8. 

and total. flapping derivatives are  given. 

agree well with the measured values except fo r  the lateral deriva- 

t i ves  

measured values. 

500 rpm data, wing/rotor aerodynamic interference has a negligible 

influence on the longitudinal flapping response but increases the 

l a t e r a l  flapping response by about a factor  of two over tha t  f o r  

the case of no wing interference. This accounts fo r  t he  discre- 

pancy noted above since the analysis does not include any inter-  

ference effects .  This i s  demonstrated by the f ac t  that the pre- 

dicted value of 

case of no wing interference. 

These results, expressed i n  

Both the component 

The predicted resu l t s  

ab,/aa, ,where the calculeted values are  about half of the 

A s  indicated by a comparison of the 185 knot, 

ab,/3am agrees with the measured value i n  the 

Several scale models have also been b u i l t  by Bell i n  support 

of t h e i r  e f for t .  

An experimental investigation conducted by Bell i n  the LTV low- 

speed wind tunnel w i t h  the model proprotor mounted on a s t ra in-  

gage balance was directed at measuring the s t a t i c  normal- and side- 

force derivatives as a function of tunnel speed and ro tor  rpm. 

Some of the i r  data areshown i n  Figs. 5-61 and 5-62 along with the 

predicted r e su l t s  using the analysis developed i n  Appendix C, 

Two of these are shown i n  Figs. 5-59 and 5-60. 

d 
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Model values are presented. 

the  calculated values are larger  i n  magnitude i n  all the  cases. 

However, blade root conditions (such a8 effect ive root cutout and 

spinner e f fec ts  on the flow field) me known t o  have a strong 

influence on the s t a t i c  forces and are  probably the reason fo r  the  

lack of quantitative agreement. 

The measured trends are  predicted but 

A recent jo in t  NASA/Bell test program (August 1971) i n  the  

Langley transonic dynamics tunnel (Fig. 5-60), directed at  deter- 

mining the s t a t i c  s t a b i l i t y  and control character is t ics  of tilt- 

rotors  operating i n  the airplane mode a t  high Mach and Reynolds 

numbers, provided the opportunity t o  measure the blade flapping 

character is t ics  at  high Mach numbers since the model and s t ing  

t o  which it was  attached were effect ively r i g i d  and the pi tch 

sweeps were res t r ic ted  t o  angles below stall.  

believed t o  be the f i r a t  which provide 8x1 experimental indication 

of the effect  of high subsonic Mach number on proprotor flapping 

i n  the airplane mode of f l i gh t .  Flapping was measured i n  both a i r  

and freon for  several values of tunnel speed over a range of pi tch 

angles. 

slopes of the flapping amplitude versus pi tch angles curves, are  

shown i n  Fig. 5-63. Since the range of inflow r a t i o s  over which 

the derivatives were measured was t h e  sane i n  air  and freon, and 

the  test  medium densi t ies  were about the  same, an indication of the 

Mach number ( ie. ,  compressibility) e f fec ts  on the flapping deriva- 

t i v e s  can be gotten by comparing the  air and freon resu l t s .  

speed of sound i n  freon is  approxinately half t h a t  i n  air so that 

These r e su l t s  a r e  

The resul tant  derivatives,  obtained by evaluating the 

The 

d 
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for  a given tunnel speed {or inflow r a t i o )  the Mach number i n  

freon is  about twice t h a t  i n  air. The calculated r e s u l t s  fo r  air  

had no Mach number correction applied t o  them but did account fo r  

the change i n  63 with airspeed. Although t h e  calculated results 

fo r  freon included a Mach correction t o  t h e  l i f t  curve slope i n  

addition t o  the  63 variat ion with airspeed, the measured dropoff 

i n  the  flapping derivative at high Mach numbers could not be 

predicted u n t i l  blade drag w a s  included. Since the flapping 

derivative analysis does not include blade drag i ts  ef fec ts  were 

approximated by multiplying the perturbation change i n  blade section 

angle of a t tack by a constant representative of the "average" blade 

drag coeff ic ient  i n  the drag r i s e  Mach number region. The drag 

rise associated w i t h  operation at high Mach numbers i s  seen t o  

reduce the flapping as Mach number is  increased and suggests t h a t  

calculations based on the  neglect of drag w i l l  predict  conserva- 

t i v e  values of flapping at  Mach numbers where drag is inf luent ia l .  

Additional Application of S t a b i l i t y  Analysis 

The r e su l t s  presented i n  t h i s  Chapter demonstrate tha t  the  

ana ly t ica l  predictions are i n  general. agreement w i t h  experimental 

data and thus provide val idat ion of the proprotor s t a b i l i t y  and 

response analyses developed i n  t h i s  disser ta t ion.  Although the 

analyses have been developed f o r  a proprotor of t he  semi-rigid 

(o r  gimbaled) type charac te r i s t ic  of B e l l  designs and are thus 

s t r i c t l y  applicable only t o  designs of t h a t  type, the  analyses 

have a somewhat broader range of appl icabi l i ty .  Specif ical ly ,  the  

d 
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s t a b i l i t y  analysis derived i n  Chapter 3 has also been applied 

( R e f .  5-16) t o  a large bulk of whirl f l u t t e r  data obtained during 

a jo in t  NASA/Grumman test program (March 1971) i n  the  transonic 

dynamics tunnel employing a research configuration of a semi-span 

model of the Gmmrmasl "Helicat" t i l t - ro to r  (Fig. 5-64). 

ro tor  design i s  characterized by a proprotor having blades with 

of fse t  flapping hinges. 

gation w a s  the  extensive parametric study of forwa,rd and backward 

whir l  f l u t t e r ,  with emphasis on forward whirl, varying such para- 

meters as pylon pi tch and yaw s t i f fness  and damping, hinge o f f se t ,  

and pitch-flap coupling. 

This tilt- 

The objective of t h i s  par t icular  investi-  

For analysis purposes the  restoring centrifugal force moment 

2rom the of fse t  flapping hinge w a s  represented by introducing an 

equivalent hub spring i n  the manner outlined i n  Appendix B. 

Analysis based on the equivalent gimbaled proprotor generally 

predicted the f l u t t e r  speed, mode, and frequency of the whirl 

i n s t ab i l i t y  i n  each case. 

both the forward and backward whirl modes were very l i gh t ly  

damped (or one mode had zero damping while the other had a very 

s m a l l  amount of posit ive damping). The analysis also predicted 

these "bi-modal" i n s t a b i l i t i e s  . 
equivalent system are  not always sat isfactory,  t he  degree of corre- 

l a t ion  i n  th i s  instance was extremely encouraging. 

a re  being prepared as a NASA publication ( R e f .  5-16). 

Some f l u t t e r  data were obtained i n  which 

Although results based on an 

These findings 

d 
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 TAB^ 5-2 

MODEL 266 PHYSICAL PARAMETERS USED IN CORRELATIONS" 

a 
0 

n1 

r12 

Kpitch 
K 

%em 

Kchord 

'R 

Y 

'pitch 

'yaw 

%earn 
- 'chord 

P 

C 

T e a m  

September 1968 T e s t  

.0130 

.0130 

.0130 

.0130 

1.1 f t  

45.0 slugs 

84.2 slugs 

goo slug-ft 2 

845 slw-ft 2 

6.92 ft 

2.39 ft 
19.25 f t  

5.85 
.12 

1.00 
6 
6 

2.3x10 ft- lbs/rad 

12.5xlO ft-lbs/rad 

25200 l b s / f t  

42300 l b s / f t  

,015 

January 1970 T e s t  

0075 
. 0100 
.0050 

0075 
0.0 f t  

.00238 slugs/ft3 

.81 slugs 

"Values given are fo r  t he  baseline configuration. Variations 
fromthese values are indicated i n  the  text. 
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TABLE 5-3 

SCALE FACTORS FOR 0.1333-SCU SEMI-SPAN 
DYNAMIC AEROELASTIC MODEL 

Parameter 

,ength 

ieduced frequency (advance r a t i o )  

bss-density r a t i o  (Lock number) 

i’roude number 

Velocity 

T i m e  

Mass 

Mach number 

Rotor s o l i d i t y  

Reynolds number 

Frequency 

Mass moment of ,ner t ia  

Torsional spring rate 

Linear spring rate 

St i f fness  (EI, G J )  

Force 

Bending moment 

Scale f ac to r  (model/airglane) 

0 1333 

1.00 (1.00) 

1.00 (1.001 

1.00 

0.365 

0.365 

0.00237 

0 365 

1.00 

0.0487 

2.738 

4.2095 x 

3.157 x 

1.777 x 

4.2095 x lom5 

2.369 x 

3.157 x 10- 4 

d 
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TABLE 5-4 
COMPUTER OUTPUT FOR PROPROTOR STABILITY ANALYSIS OF REFERENCE 
CONFIGURATION (SEPTEMBER 1968 TEST; 52 = 238 rpm,  V = 380 k t s )  

PRUP8LTOR SlA81LITY CORR€lATICh LANGLEY T O 1  TESr 139 . RUN N0.L 8ASELINE STABILITV BEVNOARY I 2 3 8  P P W  

ROTOR LPM VELUCITV 

FTlSEC KNOTS KEAS 

LOVANCE R A T  I O  LOCK NlIII8ER IN6lOY A W > I  

J Y M I  

e*** BLAOE FLRPPlNG FREUUENCIlCICLESfREVl ,772 I.** BLADE OAMPINGIPERCENI CRITICAL1 - 15.600 

FREQUENCV 

CPS CVCLESIREV 

-2.12 582 I52€+00 
2.12425SU1E100 
L-lYOL3993E+00 

-1 ~18166516E+00 
-1 ~ 4 1 6 5 4 9 l l E 1 0 0  

1.+690QC37E+UO 
7-22193935E-01 

-1.22192823€-01 
3.612UlCIZE-OL 

-3.5J918631E-01 
-3184175720E-01 

3 . 7 ~ a 0 7 1 + ~ ~ - 0 1  

DIMPING 

PFRCENT CRITICAL 

SISILM EIGENVECTORS 

YC*  CCL 1 2 3 4 

U t  bL IU&GINARV RELL IM&GINARV REAL IPAGlNARV RrAL i u m i ~ b w  

Rcn CCL 5 6 1 8 

REAL IIIAGINARI REAL IUAGINARY RELC 1 C f f i  INARI REAL lMAGINA*V 

1 2-U311693E-01 .3.07145471-02 24113839E-01  3.0845343E-02 -419365818EtO0 5.1811815E-01 -4.9597543El00 -6.6138929E-01 
2 l-COCLUOPE+00 0 .  1.OCOOO0CE+U0 C. lrOUOOOOOE+OO 0. 1.0000000E100 0. 
3 - t -7376UWE-03 -6.9439293E-03 .E-7559632€-03 6.280515CE-03 1.6988394E-04 -5.08251261-04 7.b134112E-04 4-7957424E-04 
4 2.80C0588E-03 .b-8555399€-0% 2.06Lb733E-03 6.95438LIE-03 -6-2238617E-05 -4.9151183E-Q* -4.5333384E-05 4.8893139E-01, 
5 6 .  12IVZM)E-O4 4-854339kE-03 4-9486334E-04 4-92262241-03 -1.74OC595E-05 6.6831346E-OI -3.2164804E-05 -6.6734681E-04 
b .316k81260€-04 .4.3Ub5hWE-04 3.6L28486E-04 4.308158FE-04 2.6112430E-05 -1.8611751E-05 2.6899095E-05 1.615289lE-05 
1 1-6960378E-01 -2-562123lE-Ci 1-6992565E-UL 2.59812IlE-02 9.78555571-01 0.  9.1886065E-Ol 0. 
8 8.3254b3bE-01 0. 8-423069bE-01 0. .1.9604458E-01 -2.0600369E-02 -1.9391246E-01 2.58584631-02 
9 -2-4391313E-01 3.3074024E-01 ~ 2 ~ G 5 6 8 1 7 1 E - O I  -3.3Ib561eE-01 8.7586550E-03 1.4131293E-02 0-60243191-03 1.3846114f-02 

10 .2-5595387E-U1 Y.3968111E-02 2.5936629E-01 5.9510622E-02 0.8815955E-03 -8.6151531E-04 8.8100316E-03 1.7519248E-04 
I 1  Ll930362E-OL -2-YOC8090E-02 1. 191OIlOE-O1 2.9427141842 -1-203U29IE-02 -6.5834613E-04 -t.ZOZOZ99E-O2 6.L143053E-04 
I2 .I15667189E-02 I.4U06236E-02 1.*945064E-U2 - L421191CE-02 3.218813LE-04 5+8108865E-U4 2.8951533E-04 -5.853447lE-04 

V 11 12 4 Flutter mode ROY CCL LO 

REAL LMAGINARI REAL IIIAGINIRV REAL RELL IMACINAIO. I PLGI h d R l  

6-1706113E-U3 -1, 312498ZE-02 1.3661654E-02 1.1128748E-03 1.2930038E-02 .8.5909311F-04 x 
LOCCOOOUE+UU 0. L.0000000E+OO 0. 1 ,CU00000E+00 0. I 

-3-414bSVLt-03 2.5463715E-02 1.15882131-02 1.6413133E-03 1.2805448E-02 .1.890196CE-03 a1 
. I -U IM47 IE-02  .3.516683LE-03 1.8L6314SE-03 8.1686061E-03 1 8307022E-J3 .9.Zo3214CE-03 b l  
3-8567C62E-03 -3.1628069E-03 -3.0143583E-05 -5-0258033f-03 -9-Y072516E-05 5.2373433E-Q3By 
6-Ol51212E-05 8.659114lE-Ok 3.4031582E-04 5.4236254E-01 3 1722340E-04 .1.93936531-05 
5- 1946516E-03 -1~L808151E-UZ 1.3439014E-02 1.1531660E-03 1.2693185E-02 8.3354007E-04 '' 
9.3901163E-01 0. 9.831c168E-01 0. 9.8168199E-01 0. 
2.40t3082E-01 1.035OSOlE-01 2.0319121E-02 -1.1038442E-OL 1.8513397E-02 L.1949484F-01 
6-52S96846-02 L8002531E-01 1-900396OE-02 -1.412654VE-02 8-665410kE-02 1.6481981E-02 
5-3325565€-02 -1.4311817E-02 -4.8270690E-02 8.7151888E-04 -+.8930915E-OZ -5.1527554E-34 
1.25t1509E-IJ3 -5.06691991-03 1.41196LPE-04 -3.2608261E-03 2.0638818E-04 3.5225LOZE-03 

d 
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TABLE 5-5 
COMWTER 
UNLOCKED 

OUTPUT FOR PROPROTOR STABILITY ANALYSIS OF PYLON YAW 
CONFIGURATION (SEPTEMBER 1968 TEST; 62 = 298 rpm,  

V = 320 k t s )  

PROPRUIL I l  S l A t I I L I I V  LOWCLATION - LANGLEV I U T  TESr  I30 RU4 N0.3 PVLON V A N  UNLOCKE) 129a a p w  

MU" LJL 

< t A L  

MI,* LU1 

* t A L  

L 3 

IMI(.INA@tI HtAL 1M)lr lNAl l  M tAL I*AGIYbQV R t l l  IMArlN&r(V 

6 7 ,I 

1 *A, 1 NAHV HLAL I M A b I  NAHI Y t A L  1 *Ab1 NAKV R l  A 1  < MA,l Y A < V  

L . L I  l dbY8 t  -UL 
0. 

I 265673lJt -02 
L.b8 31441t-03 
1.97947C0t -03 
1.5 lL330bt-LU 
0. 
L .  blYJY34t -01  

-5. I 1  IUILOE -02 
I.bC4933 I t - 0 2  
I .899Y314€-01 

-5.421vu31t -04 

.b.l253b5lttOO 
1 .UUOOUOOEt UU 
5.5019bCLE-04 

~1.3698311k .U4 
-L.YbBdU55E-05 
6.4Ub0404f -02 

-1.59U9561E -01 
7-5908130E-03 
5.149 I Y b M  -53 

.9.98bLl43E-03 
d . U l 3 4 3 3 2 E - 0 4  

9.853+n49~-01 

4% 1b5YU13t-01 
0. 

-4.425LIUbE-34 
.3.1364ULUt-U4 

-4. 731Lbl  LE-05 
0. 

-I.2441060E-32 
LO22709lE-02 

.L.2493U55E-03 

.9. 240I704E-04 
1.2022284E-03 

5.55 1n819f -04 

.b. 1449357t+00 
I uouuou3c+ou 
5.*Y45597t -94 

-1. 1936041f-Jk 
.4.0Bbl233€-02 
5.6684161 t-05 
9.8541333E-01 

7.412893bE-03 
Sr 1651474€-03 

.9.9676896€-03 
1.101035CE-04 

i . > 8 8 i e 7 3 ~ - 0 i  

Y 10 I1 12 0 mutter mode 

IfiA,uliYARV REAL LHAI;INbR I R tAL I MAG I NiRV RtAL 1MA;l YA9 V 

I.8bb011bE-02 
I .UUUWOUEIUU 
9.3131294E-03 
l .OUl l395t-O3 
3.43985651-04 
1.23166bZE-04 
I .*4UMC3>E-O2 
9.8b51238E-01 
L.bb12bbbE-02 
6.331 0429E -02 

-5.lllZULOE-32 
2.B836433E-04 

2.065719bE-03 
0. 
2.24311221-03 
6.2230989t .03 

-5.637YOdlE-03 
-2.2862263E -06 
~ . 0 3 i n 5 8 0 ~ - 0 3  

-9.3138n45~-02 

. i . j 13 in5+~-03  

0. 

7.497914bE -03 
1.OCUZbY1E-03 

L . ~ I ~ ~ J I E - O Z  
I .  30000U3EtJJ 
P.914S?Zbt-J3 
d. 249811SE-J4 

- I I  Lb46b4lE-04 
1. 1841225E-04 
I l U B 1 4 I * E - U 2  
9.85~1611E-OL 
2. bb3WlbE-02 
b.78958UlE-02 

-5.7493283E-02 
5.3885234t-34 

I .  b l t l L i 8  Z E - 0 3  
0.  
2.5904056E-03 

-6. 1 9 5 7 l l l t  23 
5. 159375bE 33 
4. 7893Ubbc 35 
I. 594LILV5f - 0 3  
0. 
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TABLE 5-6 
COMPUTER OUTPUT FOR ZERO R P M  STABILITY ANALYSIS OF REFERENCE 
CONFIGURATION (JAEJUARY 1970 TEST; V = 160 k t s )  

PROP<GTJR S T b B I L l T I  CORWELbllCN LANGLEY TOT TEST IC4 PUN N0.l . 1 RPM 

R 3 1 O U  R P M  V E L U C I f l  b3VbNCE RATIO LUCK tlJY8Fq I N F l W  AY;l- 

FTlSEC KNOTS UEAS J PHI 

1.UJOUJO JJttUU Z-ldZIULIJE+OZ 1.6UUOUUUJEtJZ 1.bUU0UOODEtOZ 4.2L20042IEt02 4-01363158t*33 8 Yb7l49OBF*Ol 

S Y S T t M  tlGtNV4LUES 

REAL IMbGINARV 

FREWENZY OAMPINS 

PERCENT CRlllCAl CPS CVCLESIREV 

SYSTEM t 16tkVELTURS 

QGM 

L 
c 
3 * 
5 
(I 

H 
Y 

I* 
11 
LL 

R O Y  

I 
2 
3 * 
5 
b 
I 
U 
9 
IO 
I 1  
LL 

RGM 

I 
2 
3 
4 
5 
b 
7 
U 
Y 

10 
I 1  
12 

CUL 5 6 1 0 

*CAL IMICIYAHY R t b L  IHASINbHY REAL I UAGINARY REAL I M b i l Y b * Y  

-5.5lr3bJ3E-J2 8~2724456E-U4 5.5L63b04t-02 C.68U3348E-31 7.3908036E-31 .7.0b22902E-3I -5.0513186E-31 
I OYY8j39E-LU Zr7bYO03UE-42 3.2772959E-4J .1.9418173t-03 .7.5230077E-02 3. ll2627UE-04 7.521785lC-32 
L.195105YE-19 1.6603901E-42 -b.>043090E-41 .3.1994751E-04 -4.3733357E-03 .1.165259#E-04 4.3971180E-03 
-2.7lDb53YE-30 I.oIb0dYlt-43 -2 .1780143t-43 -1.0043511E-05 1.0698851E-04 .2.5822154E-05 1.0223L86E-34 
1.547CZZOE-3u 3.28055911-43 4.3327566E-42 L05Y9bZZE-04 2.58b0071E-03 5.4065595E-05 -2.5891030E-03 
5.3LLY3)UE-31 b.515395LE-k> br13L1459E-44 -1.OObI31kE-06 '6.5820bOlE-Ob .I. 7681821E-07 b.7ObUL59C-Ob 
U. Y.Y841bYYE-01 0. .1.83855blE-L9 1. 15373801-29 .1.2985391E-29 1,7198589E-29 
1 . 4 Y 2 4 1 L b E - 2 9  >.912Lir5E-39 4.145692bE-4I 9.9481190E-01 0. 9.9406380E-01 0- 

.4 .UUk14abE 3 0  L.0587755E-39 1.37232blf-4l 5.1922198E-32 -3.5294100E-03 5.0105255E-02 1.18025115-03 
3 31441LYE-1U -4.4437511E-41 -4.1509503E-42 .1.4L04900F-03 -L~6922648E-O4 .1.3521131E-03 3135613455-34 
6.668C429C-31 7.94801341-40 1 0270LbOE-4L -3.4211755E-02 5.10b7132E-04 -3.IZ23292E-02 7.23071221-04 
3.bZlUll~E-3U 4.17Y3135E-41 4.60955331-43 0.732iO9OE-05 .I-10554OlE-05 0.8619803E-05 4.024B28lE-05 

c JL Y L U  0 mutter made I 1  I 2  

l lEAL IMbGlYbRf REAL IMAGINARV REAL I R f f i  INAIPI REAL 1 NAGINPlRY 

s.5940319~-01 ~ . O I B ~ B Z ~ E - O L  0. 7.91b+151E-Ol 0. 
0 ,  1-5b25302E-01 5.4510182E-01 1 1314353E-01 .5.5023653€-01 
2.2736099E-UZ 3.35535blE-02 .6-6926155E-03 3,  3b7b3JZE-02 4.4255100E-33 
9.03bJ834E-Ok 2.4050221E-03 3.9678081E-03 2.333511bE-03 ~4.1410034!-03 
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TABLE 5-7 
COMPUTER OUTPUT FOR PROPROTOR STABILITY ANALYSIS OF CONFIGURATION 
WITH s3 = -32O (JANUARY 1970 TEST; 61 = 172 r p m ,  V = 320 k t s )  

CDPRELATfON STUOIES TOT TEST Ibk OECTA 3 - -32 DEGREES 

POTW R P *  V E L n C l l V  4YVANCE P I T 1 0  LOCK NIIMJER INFLRY LNGLE 

FllsEr K N O I I  KEAS J P(I I 

I 12000000Ft07 5-*054054lE+02 3.2000WOOEMZ 3.20000000Ft02 k.B9161931E+OO 4.01863158E.00 6-k3085435FUJl 

pru 

1 
z 
3 
4 
5 
b 

H 
1 

10 
I 1  
I7 

Pll" 

I 
2 
3 
4 
5 
6 
1 
8 * 

10 
11 
12 

nnu 

1 
2 
3 
k 
5 
6 
1 
8 
9 

10 
11 
1 2  

1 . 0 9 2 6 8 i s o ~ t o ~  3 .e1 i i0058~+00 
.1.092e6135~+01 - 3 . 8 1 ~ 3 2 i 9 6 ~ t o o  
~6.58823191€+00 -2.29822255Et00 
6.581409911+00 2.295840691t00 
k.55514404EMO 1.58900453EtOO 

4.5kk8198OF+OO 1.58510225Et00 
2.879C8600E100 1.0045k163ElOO 

-2.81r)686001+00 1~0055k163EtOO 
L15158673f *OO 6.110186211-01 

-1.12823141E+00 -6.02811CS3E-01 
~1.296031911H)O -4r52101154E-01 
1.21091681E+00 4.4336k024E-01 

-2.53333466FlQO 
-4.50442265E-01 
1.45611191El00 
9.03125310E-02 

-8.84012 131 E I O O  
-8.5%4k8621100 
-1.8k1221311+00 
-3 .411 31 I86F-0  I 
-3.62562116€+01 
-3.61261130E+OL 
3.13855355E.00 
2.508k85kOE+OO 0 First flutter mode 

3.355011lr 42 l.hSh5091Z-41 1.2411944F-42 1 llZblB6E-41 
2.9715105r Oh I .053hRk6E 04 6.011325kE-06 1.0509720F-04 
6.2710010F R4 7.930057hF 04 5.5325035F-04 R.26211811-04 
8.4R401411 04 I 9103400F 07 b-h197501F-04 1.0143386F-02 
?.OS50949F-05 1.f 1254hlF 0 4  3.5D32337F-01 1.62149L5F-04 
7.637056V 04 1 . R 3 H P L 9 I F  07 4.ClIR33Of-05 I.0311658F 02 
I.hh815lll 40 1 fdh537)f 41 5.3k3692hF-41 -h.5049154F-47 
1.71V1114r 0 1  7.11h25WlC 05 1.714413?F-03 4.49Rlb4RF-04 

f.9511054t 01 4.OhRO5/NF O/ b.Vh17003F-01 4.7497194F-07 
7.4ll l l l l ' i l  07 1 15?50+4F 0 4  7.kH615521 0 7  I13661*l?bC-O4 
I.I~IIJIOSI 01 0 .  7 127038lF-01 0.  

5.557(+1i '  07 4 1 3 7 h 8 n i ~  07 5 .1 , '1065i3~-~7  ~ . ~ I V A ~ E - O Z  

5 . 1 7 0 3 0 1 ~ ~ .  1 4  .9985310~- 71 
.2.2952602€ -03 .2.5962345E-02 
1.5648ZbZE-02 1.9806524E-03 

.5.3504122F -03 1.5330203 E-02 

.1.6663909F-04 9.7120306E-05 

.2.265011kF. 30 1-43719988-31 
1.4881146F-01 0 .  
1.5352419F-01 .4.3179399E-01 
4.2522485F-01 -1.91924791-01 
6+1811959F-02 2.36k30981-03 
8.5101128E-04 -2.21891OSE-07 

. 1 . ~ 5 8 i ~ x - n +  . ~ . w w ~ ~ o E - o ~  

L.1199S88E 33 
2 -22 15Sk9E-03 
1.58805861-02 
4.919kL501-03 
4.1052217E-05 
1.7209595F-OS 
5.3112156E-33 
1.44837461-01 
1.4329SOOE-01 
k.  30 68099F-0 1 
6.65W Ik3E-02 
2.72039001-04 

3.14845151-34 .1.OL90251E-03 -5.5165146E-02 
2.59633991-02 ~L.0260251E-kO 1.2134609E-40 
3.65923028-03 6.39311566-52 3.090805kE-kl 
1.5M8069E-02 1.2952558E-41 -6.9099905f-42 

7.5590k36E-05 S.289k533E-43 1.0165370E-42 
L.2321555E-32 9.98576126-01 0. 
0. 2-28131931-39 -1.8129065E-39 
4.4k54426E-01 -5.12887911-10 I.0592216E-50 
1.8001392E-01 4.08108321-51 2.1168093E-H) 

-4.5165399E-03 3.116005kE-50 -1.22999661-40 
2-2232597E-02 -2.2449763E-kl k.8519521E-41 

Z . ~ Z B Z ~ ~ O E - O ~  i.meook8E-42 I . ~ O O ~ ~ E - + Z  

1.91SSO?lE-Ok 5.5183218E-a2 
-3.015W23E-40 5.38009151-40 
1.4020016E-41 1~0~10718E-kO 
4.k8klZ2OE-41 1.9804250E-kL 
2.9621542E-42 -k.33986501-52 
1.3513020E-42 -3.750929kE-kZ 
9.9841622E-01 0. 
8.11562951-39 5.51932k3E-39 
1.9338225E-39 -2.k3990861-40 
9.1578111E-41 -1.31728211-40 
L.2656069E-39 3.3700813E-k0 

-8.298911+~-41 - 1 . 5 4 ~ 3 9 3 ~ - + 0  

rot 9 10 11 12  0 First flutter 

Ofdl I N A G I N A R Y  PEAL IMAC,INIRV REAL IYIGINIRY RE&L IUAGINLQV 

1.6519lklF. 32 5.0Ll2129E-33 I.953501OE-32 -1.5001266E-32 -1.8658858E-35 3.0096131E-35 
.80230lOE-O2 2.85433106-02 1.9009042E-02 3.11k305OE-03 1.183+448E-01 
.5151512€-02 6.kbk8k66f-05 1.5181368E-02 2.133lkl8E-02 1.4133141E-03 
.9301112E-04 1.1126k23E-02 8.2108023E-Ok 3.1121kk4E-03 1.7120503E-02 

-k.Bkll3lbE-05 .5.5502819E-04 1.5800898E-05 5.6849194E-Ok 1.2116148E-05 1.1155941E-Ok 
-2.1475001E-31 -4.04869231-31 2.2615056F-31 -b.1019110E-31 1.2$54169E-33 616941117E-3* 
9.1156115E-01 0 9.6991683E-01 0. 9.6465311E-01 0. 
1.6552L441-01 6.4331699E-02 1.6883058E-01 -6.8925200E-02 1 lkSO915E-02 .1.7331899E-01 
k18163994€-02 1 1413105E-01 5.256k088E-02 1.1159851E-01 LAS112641-01 -2.L3013321-02 

-4.0011395f-02 1.652552kf-02 4.018005lE-02 LLlB4783E-02 -5.1535'518E-02 -5.8430098E-03 
6.1915023E-03 1.C419750E-03 6.2351252E-03 -2.058513lE-03 1 1431595E-03 .5.891k308E-03 

2 ~ 8 5 9 8 4 6 ~ - 0 3  7- i402403~-03  ~ . 5 i 8 5 0 9 2 ~ - 0 3  -2.e+56305~-03 s.1839292~-06 - ~ . w ~ , ~ z o I E - o ~  

mode 

1.6123665E-32 1.1542089E-32 X 
3.0218566E-03 1.2046538E-01 Z 
2.23185116-02 1.0+16314E-O3a~ 
3.7k14696E-03 1.8616316E-02 
6.4993322E-04 6.5031206E-03 $y b1 
7.581998OE-04 1.3121'1881-04 

-4.1199661E-31 -1.00611blE-31 " 
9.62615191-01 0. 
1.2801168E-02 I-185018OE-Ol 
1.W89451E-01 2.6131284E-02 

-5.LB02315E-02 6.59294521-03 
l.24161b5E-03 6.0213315E-03 
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Figure 5-6.- Temporary ref lect ion plane setup used t o  ver i fy  the t  
proprotor-related dynamic phenomena were not affected 
by the unconventional mounting arrangement. 
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Figure 5-11.- General arrangement of the Langley transonic dynamics 
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Figure 5-17.- Root locus for reference stability boundary 
(52 = 238 rpm). 
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Figure 5-18.- Measured effect  of proprotor on wing beam mode damping 
(wing fair ings on). 
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Figure 5-20.- Comparison of measured and cdculated variation of 
wing beam and chord mode damping with airspeed (viscous 
description of damping). 
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Figure 5-24.- Measured effect o f  thrust on wing beam mode damping. 
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Figure 5-25.- Measured variation of vertical component of gust angle 
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d 



345 

2 

I I I 1 
0 1 2 3 

Vertical gust frequency - cps 

Figure 5-26.- Measured effect of proprotor on wing root bending moment 
amplitude response function. 
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Figure 5-27.- Measured effect of wing aerodynamics on wing root 
bending moment amplitude response function. 
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Figure 5-28.- Measured ef fec t  of proprotor rpm on wing root bending 
moment amplitude response function. 
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Figure  5-30.- Variation of steady-state blade flapping with 
proprotor rpm. 
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Figure 5-34.- Root locus for 52 = 135 rpm (reference configuration). 
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Figure 5-40.- Variation of s1 + w flapping mode damping with 
airspeed for 62 = 0 8 rpm.  
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Figure 5-41.- Typical traces showing model response at flutter for 
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Figure 5-42.- Calculated e f fec t  of wing tors ion s t ruc tura l  damping 
and proprotor precone on wing tors ion mode in s t ab i l i t y .  
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Figure 5-45.- Calculated effect  of precone on flapping mode s t a b i l i t y  
for  5O of freedom system. 
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Figure 5-46.- Calculated e f fec t  of proprotor s t ruc tura l  damping on 
flapping mode s t a b i l i t y  at low rpm for  5O of freedom 
system. 
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Figure 5-47.- Effect of hub r e s t r a in t  on flapping mode s t a b i l i t y  at 
zero rpm (6 = -22.5''). 3 
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Figure 5-48.- Effect of hub restraint on flapping mode s tabi l i ty  at 
zero rpm (63 = -32O). 
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Figure 5-50.- Effect of increased negative 63 on s t a b i l i t y  of 
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Figure 5-54.- Variation of zero rpm flutter speed with 63. 
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Figure 5-56.- Effect of blade flapping degree of freedom on wing beam 
node damping (SZ = 300 rpm) . 
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Figure 5-61,- Variation of zero frequency normal- and side-force 
derivatives with airspeed (model values). 
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